Рефераты. Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел

p align="center">t = x cos * q - у sin * q, u = x sin * q + y cos * q.

Во второй главе II тома «Введения в анализ», посвященной преобразованию координат, Эйлер коротко останавливается на вопросе о прямой. Сначала он приводит ее уравнение в виде u+ t+b = 0, но затем, желая определить положение прямой, записывает его в виде x+ y - a= 0. Он не разбирает различные возможные комбинации знаков и и упоминает лишь случаи = 0, = 0 и = а = 0, не касаясь, однако, случая ==0. Все эти возможности были впервые разобраны, по крайней мере, в форме беглых замечаний, в книге Риккати-Саладини.

В пятой главе II тома «Введения в анализ» речь идет об общих свойствах всех конических сечений, т. е. свойствах, которые можно вывести из общего уравнения второй степени. Хотя вначале Эйлер определенно заявляет, что из одного принципа вывести все свойства конических сечений нельзя и что одни получаются из способа образования этих линий на конусе, а другие из приемов их описания, но здесь он желает опираться только на уравнение. Последнее он записывает в виде

причем координатный угол в зависимости от обстоятельств берется то прямым, то отличным от прямого. Действуя вполне в духе Ньютона и Стерлинга, Эйлер в первую очередь выводит из этого уравнения на основании теоремы о сумме и произведении корней обычные свойства диаметров, секущих и касательных. К числу извлекаемых им следствий принадлежит также теорема, что коническое сечение можно рассматривать как геометрическое место к четырем прямым. Далее он определяет уравнение диаметра, делящего пополам хорды, параллельные ординатам, вначале в прямоугольной системе, а затем для того же конического сечения в системе с прежними осью абсцисс и началом, но с косоугольно расположенными ординатами. Точка пересечения обоих диаметров дает центр конического сечения, координаты которого не зависят от угла, образуемого направлением ординат с осью абсцисс. Затем Эйлер устанавливает отнесенные к «сопряженным диаметрам» уравнения

yy=+ x+ x x и yy= - x x.

За этим следуют совершенно новые и оригинальные вещи. Именно, исходя из последнего уравнения (чертит он здесь лишь эллипсы), Эйлер посредством вычислений определяет другую пару сопряженных диаметров, для одного из которых дан угол с осью абсцисс. Эйлер вычисляет тангенс угла второго диаметра с осью абсцисс, тангенс угла между обоими новыми сопряженными диаметрами и, наконец, длины последних. В этих нелегких выкладках Эйлер применяет для обозначения функций известных углов, как специальные буквы, так и их современные символы. В качестве следствий здесь получаются теоремы о постоянстве параллелограммов и сумм квадратов, построенных на сопряженных диаметрах, а также теорема о произведении отрезков касательных, лежащих между двумя фиксированными параллельными касательными.

Теперь Эйлеру нужно лишь выставить требование взаимной перпендикулярности новой пары диаметров, чтобы получить тем самым положение и длины главных осей. При этом он подчеркивает, что решение здесь существует всегда. В присоединенном к этому тому «Приложении о поверхностях» Эйлер действительно преобразовал уравнение

аасс = auu+ 2 tu+ t t

в прямоугольной системе координат к главным осям. Аналитическая геометрия конических сечений впервые была поставлена на собственные ноги.

В конце рассматриваемой главы определяются действительные фокусы. Эйлер определяет их, отыскивая на большой оси точки, для которых радиусы-векторы точек кривых могут быть рационально выражены через их координаты.

Следующая, шестая глава трактовала о классификации линий второго порядка. Эйлер различает здесь кривые только в зависимости от значения коэффициента в уравнении

уу = + х + х х.

Затем он берет для эллипса уравнение относительно центра

и, в частности, выводит из него фокальные свойства эллипса и его касательной. Далее, он вводит новые величины

(полупараметр) и d=a -- (aa-bb)

(расстояние фокуса от вершины). Тогда уравнение эллипса относительно вершины принимает вид

Теперь Эйлер переходит от эллипса к параболе, полагая 2d = c, благодаря чему а и b становятся бесконечно большими. Насколько возможно, свойства параболы он выводит, исходя из понимания ее как бесконечно растянутого эллипса. Вслед за тем он переходит к уравнению гиперболы

у у = + x x

и устанавливает, что сопряженная ось в этом случае мнимая. Однако, чтобы сохранить сходство с уравнением эллипса, он полагает мнимую ось равной , в результате чего уравнение гиперболы приобретает вид

О свойствах гиперболы он умозаключает, представляя себе, что в соответствующих случаях для эллипса bb заменено через -bb. Установив для угла, образуемого касательной с большой осью, скажем, угла , общее уравнение

tang =

Эйлер находит асимптоты, полагая х= (т.е. ), что дает для тангенса угла асимптоты с осью значение . При выводе различных свойств асимптот он определенно отмечает, что они сохраняют силу, когда, например, секущая прямая пересекает не одну ветвь гиперболы, а обе. Само собою, разумеется, Эйлеру было известно также определение асимптот с помощью разложения на множители совокупности старших членов уравнения кривой. Однако этот прием он применил лишь в последующих главах, вообще посвященных бесконечным ветвям высших кривых. В главе VII Эйлер делает замечание, что если больше, чем 4, то общее уравнение

y y+ x y+ x x + y + x +=0

представляет собой гиперболу. Вообще же у Эйлера отсутствовали еще общие критерии классификации кривых по их коэффициентам. [11]

§3. 2. Поверхности второго и высших порядков

«Поверхности» как таковые, кроме плоскости и шара, древние математики почти не рассматривали. Правда, Архимед присоединил к известным тогда обыкновенным коническим и цилиндрическим поверхностям еще «сфероиды» и «коноиды», но он смотрел на них как на «тела», имея целью определение их объемов.

Уравнение поверхности в пространственных координатах вывел впервые Лагир.

В трактате о кратчайших линиях на поверхностях [Comm. Ac. Petr., 1728 (1732)] Эйлер рассмотрел три частных рода поверхностей, а именно, цилиндрические и конические поверхности и поверхности вращения. Он привел для этих поверхностей, отчасти лишь словесно, уравнения, которые мы можем записать в виде

z=(y), z=(x2+ y2)

Вскоре затем Герман в одной статье в Comm. Ac. Petr., 1732/33 (1738) частью аналитически, частью геометрически исследовал несколько поверхностей, данных своими уравнениями. Прежде всего, он рассмотрел плоскость

azx+by+cx-e2=0,

затем «параболически-цилиндрический клин»

z2 - ax - by=0

конус

z2 - xy=0

«коноиды»

z2 - ax - by=0

и

a z2 + b y z+ c y2 - e x z + f x2+ g z - h x = 0

и, далее, «круглые тела» с общим уравнением

u2 - x2 - y2 =0

где

u2=a2 - и u2=с2 -

(в последнем случае при а=b получается шар). В заключение Герман рассмотрел тело, уравнение которого привел в виде (b-z)=bx. Это уравнение аналитически, хотя и не применяя настоящих пространственных координат, исследовал в приложении к «Алгебре» (1685) еще Валлис, назвавший его Cono-Cuneus («конусо-клин»). Уже приведенные названия фигур свидетельствуют о том, что Герман видел в них в основном еще тела, чему содействовало также ограничение лишь положительными значениями z, а по большей части и положительными х, у. Для параболического конуса Герман определил касательную плоскость, не приводя ее уравнения, для коноидов -- их высшие точки, для конусов (в том числе для тех, которые оказываются частными случаями коноидов) -- круговые сечения и для «конусо-клина», рассматриваемого лишь в первом октанте, -- различные сечения, характеризующие форму этих тел.

Эйлер присоединил ко второму тому своего «Введения в анализ» (1748) довольно обширное «Приложение о поверхностях». Прежде всего, он заявил, что о поверхности можно судить по расстояниям ее точек от произвольно выбранной плоскости. В этой плоскости он затем взял «ось» с «начальной точкой абсцисс» и ввел, таким образом, прямоугольную систему координат. Эйлер определенно указал, что х, у, z следует придавать всевозможные положительные и отрицательные значения, отметил возможность взаимной перемены трех координат и образуемых их осями плоскостей, весьма подробно разобрал вопрос о симметрии координат в восьми октантах. Тем не менее, на чертежах во внимание всегда принимался лишь первый октант, форма поверхностей вообще не анализировалась и понимание пространственных фигур как тел еще не было преодолено. Далее, Эйлер показал, что уравнение с двумя координатами представляет цилиндрическую или призматическую поверхность, а однородное уравнение выражает конус (или пирамиду). После этого он привел весьма общий класс поверхностей, включающий конусы, цилиндры и поверхности вращения (однородное уравнение относительно Z, х, у, где Z есть функция z), затем другой класс поверхностей, сечения которых (именно в первом октанте), перпендикулярные к оси, представляют собой треугольники (сюда попадает, между прочим, «конусо-клин» Валлиса), потом класс поверхностей, параллельные сечения которых аффинные между собой, и еще два вида линейчатых поверхностей, -- все это без примеров. Затем Эйлер показал, как можно вообще представить сечение поверхности произвольной плоскостью в самой этой плоскости уравнением с двумя координатами t, v; он применил это потом к точному исследованию сечений цилиндра, конуса и шара, причем за основу взял прямые эллиптические цилиндр и конус, включающие рассматривавшиеся раньше косые круговые конус и цилиндр.

За этим следовала специальная глава, в которой выводились уравнения, преобразующие одну прямоугольную систему пространственных координат в другую. Так как Эйлер ввел шесть определяющих преобразование величин, то его формулы оказались несимметричными. В той же связи Эйлер ввел здесь понятие «порядка» поверхности и сформулировал теорему, что порядок плоской кривой, возникающей при сечении поверхности, не выше порядка самой поверхности; попутно он отметил также возможность распадения линии пересечения на несколько других. В качестве примера Эйлер привел уравнение плоскости

б x + в y + г z = a,

для которой, между прочим, определил углы с координатными плоскостями.

После всего этого Эйлер впервые предпринял исследование общего уравнения второй степени с тремя координатами. В первую очередь он рассмотрел совокупность высших членов уравнения, как характеризующую «асимптотический конус», и сообщил условия его действительности, а также его вырождения. Затем, не произведя, впрочем, всех должных выкладок, он правдоподобным образом показывает, что общее уравнение может быть приведено к виду

Арр + Вqq + Crr + К = 0.

Из этого уравнения Эйлер получает эллипсоид («elliptoeides»), однополостный и двухполостный гиперболоиды («superficies еlliptico-hyperbolica» и «superficies hyperbolico-nyperbolica»). Эллиптический и гиперболический параболоиды («superficies elliptico-parabolica» и «superficies parabolico-hyperbolica») выражены здесь уравнением

Арр ± Bqq = ar.

Эйлер упоминает еще параболический цилиндр

Арр = аq

и делает несколько беглых замечаний о том, как можно определить род поверхности по какому-нибудь данному уравнению. Рассуждения Эйлера, особенно в части, касающейся доказательств, были еще весьма несовершенны, но предложенная им классификация легла в основу позднейших исследований.

Еще в начале «Приложения» Эйлер заявил, что не намерен рассматривать подобно Клеро кривые двоякой кривизны отдельно, ибо они тесно связаны с природой поверхностей. Свое «Приложение» он поэтому закончил главой о пересечении двух поверхностей, вообще говоря, представляющем пространственную кривую. Он показал, как при исключении одной из переменных возникают уравнения проекций этой кривой на координатные плоскости, и применил это также к пересечению поверхности с плоскостью. Для примера он привел пересечение плоскости с шаром, причем нашел условия их соприкосновения. Далее, он определил для шара сначала конус вращения, касающийся его вдоль некоторой окружности, а потом эллиптический конус, касающийся шара в двух точках. Относительно последнего случая он заметил, что хотя кривая пересечения имеет лишь две действительные точки, но ее проекция на некоторую координатную плоскость действительна. При определении касательной плоскости к поверхности Эйлер пользовался лишь приемом Клеро, не устанавливая общего уравнения этой плоскости, которое потребовало бы «анализа бесконечного», между тем как «Введение в анализ» должно было лишь «открыть к нему путь». В самом конце Эйлер разъяснил, как найти две поверхности, пересекающиеся по данной плоской кривой.[11]

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.