Рефераты. Качественный анализ и экспериментальные задачи на распознавание основных классов неорганических веществ

b>2.1.2 Основания

Основания состоят из металла и одновалентных гидроксогрупп ОН, число которых равно валентности металла. Примерами оснований могут служить гидроксид натрия NaOH, гидроксид меди Сu(ОН)2. Важнейшее химическое свойство оснований - способность образовывать с кислотами соли. Например, при взаимодействии перечисленных оснований с соляной кислотой получаются хлористые соли соответствующих металлов - хлориды натрия или меди:

NaOH + НС1 = NaCl + Н2О; Cu(OH)2 + 2НС1 = CuCl2 + 2Н2О.

Основания классифицируют по их растворимости в воде и по их силе. По растворимости основания делятся на растворимые, или щелочи, и на нерастворимые. Важнейшие щелочи - это гидроксиды натрия, калия и кальция. По силе основания делятся на сильные и слабые. К сильным относятся все щелочи, кроме гидроксида аммония. Согласно международной номенклатуре соединения, содержащие в своем составе гидроксогруппы, называют гидроксидами. В случае металлов переменной валентности в скобках указывают валентность металла в данном соединении. Так, Са(ОН)2 - гидроксид кальция, Fe(OH)2 - гидроксид железа (II), Fe(OH)3 - гидроксид железа (III).

В устаревшей русской номенклатуре названия оснований обычно образовывались, прибавлением к названию соответствующего оксида приставку гидро- или слово гидрат. Так, Са(ОН)2 - гидроокись кальция, Fe(OH)2 - гидрат закиси железа, Fe(OH)3 - гидроокись или гидрат окиси железа.

2.1.3 Кислоты

Кислоты состоят из водорода, способного замещаться металлом, и кислотного остатка, причем число атомов водорода равно валентности кислотного остатка. Примерами кислот могут служить соляная (хлористоводородная) НСl, серная H2SO4, азотная HNO3, уксусная СН3СООН. Важнейшее химическое свойство кислот - их способность образовывать соли с основаниями. Например, при взаимодействии кислот c гидроксидом натрия получаются натриевые соли этих кислот:

2NaOH + H2SO4 = Na2SO4 + 2H2O; NaOH + HNO3 = NaNO3 + H2O.

Кислоты классифицируются по их силе, по основности и по наличию кислорода в составе кислоты. По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты - это азотная, серная и соляная.

Основностью кислоты называется число атомов водорода в молекуле кислоты, способных замещаться на металл с образованием соли. Такие кислоты, как соляная и уксусная, могут служить примерами одноосновных кислот, серная кислота - двухосновна, ортофосфорная кислота Н3РО4 - трехосновна.

По наличию кислорода в своем составе кислоты делятся на кислородсодержащие и бескислородные. Азотная и серная кислоты - кислородсодержащие кислоты, соляная кислота и сероводород - бескислородные.

Названия кислот производят от того элемента, от которого образована кислота. При этом названия бескислородных кислот имеют окончание водородная: НСl - хлороводородная (соляная кислота), H2S - сероводородная, HCN - циановодородная (синильная кислота). Названия кислородсодержащих кислот также образуются от названия соответствующего элемента с добавлением слова кислота: HNO3 - азотная, Н2CrO4 - хромовая. Если элемент образует несколько кислот, то различие между ними отражается в окончаниях их названий. Название кислоты, в которой элемент проявляет высшую валентность, оканчивается на ная или овая; если же валентность элемента ниже максимальной, то название кислоты оканчивается на истая или овистая. Например, НNO3 - азотная кислота, HNO2 - азотистая, Н3AsO4 - мышьяковая, H3AsO3- мышьяковистая. Кроме того, одному и тому же оксиду могут отвечать несколько кислот, различающихся между собой числом молекул воды. При этом наиболее богатая водой форма имеет приставку орто, а наименее богатая - мета. Так, кислота Н3РО4, в которой на одну молекулу фосфорного ангидрида Р2О5 приходится три молекулы воды, называется ортофосфорная, а кислота НРО3 - метафосфорная, так как в ней на одну молекулу Р2О5 приходится одна молекула воды. Указанная номенклатура кислот не строга. Наряду с приведенными окончаниями и приставками употребляются и другие. Кроме того, ряд кислот имеют исторически сложившиеся названия.

2.1.4 Соли

Сомли -- класс химических соединений, кристаллические вещества, имеющие ионную структуру. При диссоциации в водных растворах соли дают положительно заряженные ионы металлов и отрицательно заряженные ионы кислотных остатков (иногда также ионы водорода или гидроксогруппы). В зависимости от соотношения количеств кислоты и основания в реакциях нейтрализации могут образоваться различные по составу соли.

Типы солей

Средние (нормальные) соли -- все атомы водорода в молекулах кислот замещены на атомы металла. Пример: Na2CO3, K3PO4.

Кислые соли -- атомы водорода в молекулах кислоты замещены атомами металла частично. Получаются они при нейтрализации основания избытком кислоты. Пример: NaHCO3, K2HPO4.

Основные соли -- гидроксогруппы основания (OH-) частично заменены кислотными остатками. Получаются при избытке основания. Пример: Mg(OH)Cl.

Двойные соли -- образуются при замещении атомов водорода в кислоте атомами двух разных металлов. Пример:

CaCO3·MgCO3, Na2KPO4.

Смешанные соли -- в их составе один катион и два аниона. Пример: Ca(OCl)Cl.

Гидратные соли (кристаллогидраты) -- в их состав входят молекулы кристаллизационной воды. Пример:

CuSO4·5H2O.

Комплексные соли -- особый класс солей. Это сложные вещества, в структуре которых выделяют координационную сферу, состоящую их комплексообразователя (центральной частицы) и окружающих его лигандов. Пример:

K2[Zn(OH)4], [Cr(H2O)6]Cl3, [Ni(NH3)6](NO3)2.

Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей.

Нахождение в природе

Многие минералы -- соли, образующие залежи (например, галит NaCl, сильвин KCl, флюорит CaF2).

Номенклатура

Названия солей образуются из двух слов: название аниона в именительном падеже и название катиона в родительном падеже: Na2SO4 -- сульфат натрия. Для металлов с переменной степенью окисления её указывают в скобках: FeSO4 -- сульфат железа (II), Fe2(SO4)3 -- сульфат железа (III).

Названия кислых солей начинаются с приставки «гидро-» (если замещён один атом водорода) или «дигидро-» (если замещены два атома водорода). Например, NaHCO3 -- гидрокарбонат натрия, NaH2PO4 -- дигидрофосфат натрия.

Названия основных солей начинаются с приставки «гидроксо-» или «дигидроксо-». Например, Mg(OH)Cl -- гидроксохлорид магния, Al(OH)2Cl -- дигидроксохлорид алюминия.

В гидратных солях на наличие кристаллической воды указывает приставка «гидрат-». Степень гидратации отражают численной приставкой. Например, CaCl2·2H2O -- дигидрат хлорида кальция.

На низшую степень окисления кислотообразующего элемента (если их больше двух) указывает приставка «гипо-». Приставка «пер-» указывает на высшую степень окисления (для солей кислот с окончаниями «-овая», «-евая», «-ная»). Например: NaOCl -- гипохлорит натрия, NaClO2 -- хлорит натрия, NaClO3 -- хлорат натрия, NaClO4 -- перхлорат натрия.

Названия комплексных солей составляются аналогично названиям обычных солей, только с указанием лигандов и степени окисления центрального иона. Пример: [Cr(H2O)6]Cl3 -- хлорид гексааквахрома (III), K2[Zn(OH)4] -- тетрагидроксоцинкат (II) калия.

Методы получения

Существуют различные методы получения солей:

Взаимодействие кислот с металлами, основными и амфотерными оксидами и гидроксидами.

H2SO4 + Mg > MgSO4 + H2^;

H2SO4 + CuO > CuSO4 + H2O;

HCl + Mg(OH)2(изб.) > Mg(OH)Cl + H2O;

NaOH + 2KOH + H3PO4 > K2NaPO4 + 3H2O.

Взаимодействие кислотных оксидов со щелочами, основными и амфотерными оксидами.

SiO2 + CaO > CaSiO3;

Ca(OH)2 + CO2 > CaCO3v + H2O.

Взаимодействие солей с кислотами, щелочами, металлами, другими солями и нелетучими кислотными оксидами (если образуется выходящий из сферы реакции продукт).

CaCO3 + 2HCl > CaCl2 + H2O + CO2^;

CuSO4 + Fe > FeSO4 + Cuv;

CuCl2 + Na2S > 2NaCl + CuSv;

2Na2CO3 + 2MgCl2 + H2O > [Mg(OH)]2CO3 + CO2^ + 4NaCl.

Взаимодействие металлов с неметаллами.

Fe + S > FeS.

Взаимодействие оснований с неметаллами.

Ca(OH)2 + Cl2 > Ca(OCl)Cl + H2O.

Химические свойства

Химические свойства определяются свойствами катионов и анионов, входящих в их состав.

Соли взаимодействуют с кислотами, оксидами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, мало диссоциирующие вещества, например, вода):

BaCl2 + H2SO4 > BaSO4v + 2HCl;

NaHCO3 + HCl > NaCl + H2O + CO2^;

Na2SiO3 + 2HCl > 2NaCl + H2SiO3v.

Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в ряду напряжений:

Cu + HgCl2 > CuCl2 + Hg.

Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции; в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:

CaCl2 + Na2CO3 > CaCO3v + 2NaCl;

AgNO3 + NaCl > AgClv + NaNO3;

K2Cr2O7 + 3Na2SO3 + 4H2SO4 > Cr2(SO4)3 + 3Na2SO4 + K2SO4 + 4H2O.

Некоторые соли разлагаются при нагревании:

CuCO3 > CuO + CO2^;

NH4NO3 > N2O^ + 2H2O;

NH4NO2 > N2^ + 2H2O.

Практическое занятие № 1

Тема. Определение качественного состава неорганических веществ.

Цель: сформировать у учащихся методический подход к качественному анализу неорганических веществ.

Ход работы

Задания для самостоятельной работы

В четырех пробирках находятся растворы следующих солей: сульфат меди (II), хлорид меди (II), иодид калия, хлорид бария. Как определить, в какой пробирке находится каждый из растворов, не используя дополнительные реактивы? Составьте схему исследования, напишите уравнения всех возможных реакций.

 

CuSO4

CuCl2

KI

BaCl2

CuSO4

 

 

 

Белый осадок

CuCl2

 

 

 

 

KI

 

 

 

 

BaCl2

 

 

 

 

Напишите уравнения всех возможных реакций, которые будут протекать при смешивании реактивов.

Сделайте выводы по проделанной работе.

Лабораторный опыт «Распознование сульфат-ионов в растворе»

Учащимся предлагают с помощью раствора хлорида бария провести анализ пробы воды, взятой из сточных вод местного предприятия, или заранее приготовленного раствора соответствующего состава на присутствие сульфат-ионов. Для этого исследуемый раствор подкисляют разбавленной соляной кислотой и добавляют к нему по каплям реактив. При наличии сульфат-ионов выпадает белый осадок сульфата бария. По окончании исследования учащимся предлагают с помощью таблицы растворимости найти еще несколько реактивов на сульфат-ионы и самостоятельно провести исследования

Урок - практикум «Качественное определение карбонатов».

Цель: формирование умения у учащихся распознавать соли угольной кислоты -

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.