Рефераты. Обучение решению задач на проценты в курсе алгебры основной школы

p align="left">В настоящее время в школе не распространен подход целостного изучения математики V - IX классов, поэтому этот комплект можно назвать комплектом нового поколения.

§ 2. Понятие процента, основные задачи на проценты.

Слово «процент» происходит от латинского pro centum, что буквально означает «на сотню», «со ста» или «за сотню». В популярной литературе возникновение этого термина связывается с внедрением в Европе десятичной системы счисления в XV в. Но идея выражения частей целого постоянно в одних и тех же величинах, вызванная практическими соображениями, родилась еще в древности у вавилонян. Ряд задач клинописных табличек посвящен исчислению процентов, однако вавилонские ростовщики считали не «со ста», а «с шестидесяти». Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню.

По-видимому, процент возник в Европе вместе с ростовщичеством. Есть мнение, что понятие процент ввел бельгийский ученый Симон Стевин. В 1584 г. он опубликовал таблицы процентов. Употребление термина «процент» в России начинается в конце XVIII в. Долгое время под процентами понималось исключительно прибыль или убыток на каждые 100 рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике.

Интересно происхождение обозначения процента. Существует версия, что знак % происходит от итальянского pro cento (сто), которое в процентных расчетах часто сокращенно писалось cto. Отсюда путем дальнейшего сокращения в скорописи буква t превратилась в наклонную черту (/), возник современный знак процента (см. схему 1).

2

Схема 1

Также есть предположение, что знак % возник в результате опечатки. В Париже в 1685 г. была напечатана книга - руководство по коммерческой арифметике, где по ошибке наборщик напечатал знак %.

Сейчас проценты употребляются для сравнения однородных положительных количеств. Один процент - это по определению одна сотая: 1%=. Соответственно, p%=. Один процент от количества А - это, по определению, одна сотая часть количества А:

1% от А равен А .Соответственно, p% от А равен А.

Все задачи на проценты можно разделить на две основные группы.

Первая группа задач относится к той ситуации, когда даны количество А и некоторый процент p. Требуется найти количество, которое этот процент выражает.

Вопрос К1. Каково количество, составляющее p% от А?

Формула ответа: А.

Обсуждение решения: нужно обсудить, что принимается за базу в 100% .

Пример:

В городе N состоялись выборы в городскую думу, в которых приняли участие 75% избирателей. Только 10% от числа принявших участие в выборах отдали свои голоса партии «зеленых». Сколько жителей проголосовали за эту партию, если всего в городе 1 миллион избирателей?

Решение. Здесь нужно дважды применить формулу ответа на вопрос К1. По условию, в выборах приняли участие чел. От них 10% - это .

Ответ: 75000.

Вопрос К2. Каково количество, p% от которого есть А?

Формула ответа: А.

Обсуждение. Вопросы К1 и К2 родственны. Пусть искомое количество (в данном случае стопроцентная база) есть x. Тогда мы находимся в ситуации вопроса К1: А=x. Отсюда получаем формулу ответа на вопрос К2. Можно воспользоваться другим способом рассуждения при ответе на вопрос К2: если на А приходится p%, то один процент от неизвестного количества есть , соответственно неизвестное количество есть 100.

Пример:

При помоле пшеницы получается 80% муки. Сколько пшеницы нужно смолоть, чтобы получить 480 кг пшеничной муки?

Решение:

По формуле К2 искомое количество пшеницы есть 480=600 кг

Ответ: 600 кг.

Вопрос К3. Каково количество, большее чем А, на p%?

Формула ответа: А.

Обсуждение. В данном случае стопроцентная база - это А. Разница между неизвестным количеством и базой по условию составляет p%, что по формуле ответа на вопрос К1 дает А. В результате искомое количество есть А+А=А.

Вопрос К4. Каково количество, меньшее чем А, на p%?

Формула ответа: А.

Обсуждение. Аналогично предыдущему случаю. Если ответ на данный вопрос приводит к отрицательному числу, то искомое количество считают несуществующим, а сам вопрос некорректным.

Вторая группа задач освещает обратную операцию - вычисление процентов по известным количествам.

Вопрос П1. Сколько процентов составляет А от В?

Формула ответа: %.

Обсуждение. Нужно обратить внимание на то, что является стопроцентной базой (в данном случае - это В).

Пример:

В одном городе Канады 70% жителей знают французский язык и 80% - английский язык. Сколько процентов жителей этого города знают оба языка (если учесть, что каждый житель города знает хотя бы один из двух языков)?

Алгебраическое решение: Пусть x жителей знают только английский, y - только французский, z - оба языка. Тогда можно дважды применить формулу, соответствующую вопросу П1.

Сложив оба эти равенства, получим

1+

Ответ: 50%.

Геометрическое решение. Разместим всех жителей города на отрезке так, что знающие английский язык стоят на отрезке слева, а знающие французский - справа. Если этот отрезок - 100%, то общая часть этих множеств есть отрезок [30%,80%] «протяженностью» в 50% (см. рис 1.).

Рис 1.

Вопрос П2. На сколько процентов А больше чем В?

Формула ответа: %.

Обсуждение. Как и при обсуждении вопроса П1 нужно определить стопроцентную базу (в данном случае - это В).

Вопрос П3. На сколько процентов А меньше, чем В?

Формула ответа: %.

Обсуждение. Конструкция ответа аналогична предыдущему случаю.

Следует отметить, что решение данной группы задач можно проводить как алгебраическим, так и геометрическим способом.

Таким образом, можно сказать, что задачи на проценты очень разнообразны, а понятие процента используется в различных областях науки и практики.

§ 3. Изучение темы «Проценты» в современной школе.

Понятие процента имеет широкое практическое применение, поэтому оно является обязательной частью школьной программы по математике. Школьники должны научится решать основные задачи на проценты, представлять их в виде десятичных и обыкновенных дробей.

Традиционно тема «Проценты» изучается в рамках младших классов среднего звена. Можно выделить несколько подходов к изучению данной темы.

Первый подход. Рассмотрение процентов ведется как отдельная тема, без опоры на дроби. Нахождение нескольких процентов от числа осуществляется в два действия. Изучение дробей ведется отдельной темой, гораздо позже задач на проценты. Таким образом, обучение идет от частного к общему, что менее эффективно и дает меньше возможностей для развития обучаемого.

Второй подход. Задачи на проценты осваиваются как частный случай задач на дроби и все приемы решения переносятся на них, то есть изучение идет от общего случая - задач на дроби, к частному. В большинстве современных учебников реализован второй подход.

Рассмотрим более подробно изучение данной темы в некоторых современных учебниках, рекомендованных Министерством Образования России на 2003/2004 учебный год для преподавания математики в основной школе.

По учебникам [19], [21] тема «Проценты» изучается в V классе. Перед введением понятия «процент» автор предлагает рассмотреть примеры:

«Сотую часть центнера называют килограммом, сотую часть метра - сантиметром, сотую часть гектара - акром. Принято называть сотую часть любой величины процентом».

Рассматриваются три основные задачи на проценты:

Задача вида К1.

Пример 1: Бригада рабочих за день отремонтировала 40% дороги, имеющей длину 120 м. Сколько метров дороги было отремонтировано бригадой за день?

Решение:

120 м составляет 100%

1) 120:100 =1,2 м составляет 1%.

2) м отремонтировано бригадой за день.

Ответ: За день бригада отремонтировала 48 м дороги.

Задача вида К2.

Пример 2: Ученик прочитал 72 страницы, что составляет 30% числа всех страниц книги. Сколько страниц в книге?

Решение:

Неизвестное число - 100%.

1) 72:30=2,4 страницы составляет 1%.

2) страниц составляет 100%.

Ответ: В книге 240 страниц.

Задача вида П1.

Пример 3: В классе из 40 учащихся 32 правильно решили задачу. Сколько процентов учащихся правильно решили задачу?

Решение:

40 учащихся составляют 100%.

1) 40:100=0,4 составляет 1%.

2) 32:0,4=80; 32 ученика составляют 80%.

Ответ: 80% учащихся правильно решили задачу.

Однако эти виды задач не выделяются, так как в качестве основного способа решения задач на проценты принят способ приведения к единице. Он обладает определенными преимуществами:

а) проще для выполнения вычислений;

б) приучает учащихся к выделению числа, принимаемого за 100%;

в) требует проведения в процессе решения конкретной задачи соответствующих рассуждений, которые не включают запоминания правил решения того или иного вида задач на проценты.

Учебник предполагает решать некоторые задачи на проценты с помощью уравнений. Эта рекомендация относится по существу к двум видам задач: нахождение числа по данному числу его процентов и нахождение процентного отношения двух чисел. Опыт преподавания математики в V классе показывает, что учащиеся сталкиваются с определенными трудностями в процессе решения задач на проценты, что связано в основном с недостаточной осознанностью учащимися способа приведения к единице. Поэтому отработка сущности этого способа в два действия имеет решающее значение в обучении решению задач на проценты, особенно на начальном этапе усвоения знаний. Задачи, рассмотренные в примерах 2 и 3, могут быть решены с помощью уравнений. В V классе решение задач с помощью уравнений вызывают у учащихся значительные трудности.

Эта тема является одной из последних в курсе V класса. Далее авторы специально к теме не возвращается. Это не очень удачно, так как тема объективно трудная.

Несколько другой подход к этой теме в учебниках [22] [23]. Изучение процентов начинается в конце V класса. Авторы определяют процент, как иное название одной сотой. «Мы знаем, что одна вторая иначе называется половиной, одна четвертая - четвертью, три четвертых - тремя четвертями. Особое название имеет и одна сотая: одна сотая называется процентом». Учащиеся рассматривают только два вида задач:

Задача вида К1.

Пример 4. В школе 800 учащихся, 15% из них за четверть получили пятерки по математике. Сколько учеников получили пятерки по математике?

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.