Рефераты. Решение уравнений и неравенств с использованием свойств функций на элективном курсе по математике в старших классах общеобразовательной школы

p align="left">4. Использование понятия области изменения функции при решении уравнений.(3 часа)

Способы определения области изменения функции: с помощью построения схемы графика, введение нового неизвестного, сведение к простой функции с помощью преобразований. Решение уравнений и неравенств. Использование неотрицательности функций, входящих в уравнение или неравенство.

5. Использование свойств четности или нечетности и периодичности функций.(1 час).

Учебно-тематическое планирование элективного курса

Литература для учителя: [2], [3], [5], [6], [7], [8], [9], [10], [11], [14], [15], [16], [21], [23], [24], [27], [29], [30], [31], [35], [36], [37], [38], [39], [40], [41], [42];

для учащихся: [2], [3], [5], [6], [13], [24], [29], [30], [31], [35], [38], [40].

§2. Разработка занятий элективного курса

Занятие №1 Тема: «Функции и их основные свойства».

Цели: обобщение и систематизация имеющихся у учащихся знаний по теме «Функции. Основные свойства функций».

Форма работы: беседа.

Ход занятия:

1. Организационный момент. Введение в элективный курс «Применение свойств функций при решении уравнений и неравенств», сообщение целей и задач курса, требований к учащимся, форм работы, системы контроля уровня достижений учащихся и критериев оценки, ожидаемого результата по окончании изучения курса. Вопросы учащихся по организации данного курса и ответы на них учителя.

2. Обзорная лекция по теме «Функция. Основные свойства функций». Повторение имеющихся знаний программы общеобразовательной школы по теме «Функция. Основные свойства функций»: понятие функции, область определения и область изменения функции, ограниченность, определения возрастающей, убывающей функции, четность, нечетность и периодичность функций.

1) Историческая справка. Понятие функции уходит своими корнями в ту далекую эпоху, когда люди впервые поняли, что окружающие их явления взаимосвязаны. Они еще не умели считать, но уже знали, что, чем больше оленей удастся убить на охоте, тем дольше племя будет избавлено от голода, чем сильнее натянута тетива лука, тем дальше полетит стрела, чем дольше горит костер, тем теплее будет в пещере. С развитием скотоводства и земледелия, ремесла и обмена увеличилось количество известных людям зависимостей между величинами. Многие из них выражались с помощью чисел. Если за одного быка давали 6 овец, то двух быков обменивали на 12 овец, а трех быков -- на 18 овец; если из одного ведра глины изготовляли 4 горшка, то из двух ведер глины можно было сделать 8 горшков, а из трех ведер -- 12 горшков. Такие расчеты привели к возникновению понятия о пропорциональности величин. Впервые термин «функция» (от латинского «функтус» -- выполнять) в конце XVII века употребил Лейбниц (1646--1716) [12].

2) Что называется функцией?

Пусть каждому числу x из множества чисел X в силу некоторого закона f поставлено в соответствие единственное число y. Тогда говорят, что задана функция , определенная на множестве X; при этом x называют независимой переменной или аргументом, а переменную y - зависимой переменной.

3) Какие свойства функций вам известны?

o Область определения функции. Из определения функции следует, что функция задается вместе с областью определения X. Чаще всего функцию задают с помощью какой-либо формулы. При этом, если не дано дополнительных ограничений, то областью определения функции, заданной формулой, считают множество всех значений переменной, при которых эта формула имеет смысл.

o Область значений (область изменения) - множество всех значений функции .

o Ограниченность функции. Функцию называют ограниченной снизу (сверху), если существует такое число M, что для любого x из области определения верно неравенство , (). Функция называется ограниченной, если она ограничена и сверху и снизу.

o Возрастание, убывание функции. Функция возрастает (убывает), если большему значению аргумента соответствует большее (меньшее) значение функции. Общее название этих двух понятий - монотонность.

o Четность, нечетность функции. Функцию называют четной (нечетной), если для любого значения x из множества X выполняется равенство ().

o Периодичность функции. Функцию называют периодической, если существует число , такое что для любого x из области определения X число , число и справедливо равенство и . Число T называют периодом функции f(x).

4) Привести пример для каждого свойства.

3. Подведение итогов занятия. На занятии мы вспомнили основные сведения о свойствах функции. В течение элективного курса мы увидим, как работают свойства при решении уравнений и неравенств.

4. Постановка домашнего задания. Повторить теоретический материал.

Занятие №2 Тема: «Использование области определения функций».

Цель: познакомить учащихся с методом решения уравнений и неравенств, основанном на применении области определения, входящих в них функций.

Ход занятия:

1. Актуализация знаний

1) Что называется областью определения функции?

2) Найдите область определения функций:

А); Б).

3) Что называется областью определения уравнения (неравенства)? (Множество всех значений переменной, при которых уравнение (неравенства) имеет смысл, или ОДЗ).

Найдите ОДЗ уравнения .

4) Учитель делает вывод, что для того, чтобы найти ОДЗ переменной данного уравнения, необходимо найти область определения функций, в него входящих, и посмотреть при каких x одновременно имеют смысл выражения, стоящие в левой и правой частях.

2. Изучение нового материала.

1) Рассмотрим пример: . Найдем корни этого уравнения. Заметим, что если уравнение имеет решения, то они содержатся только в области определения уравнения. А ОДЗ мы уже нашли {-2;2}. Осталось подставить эти значения в уравнение. Ответ: 2.

2) Рассмотрим на примере, как знание области определения помогает найти решение неравенства:

ОДЗ неравенства есть все x, удовлетворяющие условию . Для всех x из этого промежутка имеем , а . Следовательно, решением этого неравенства является промежуток .

3. Решение задач. Учащиеся самостоятельно решают в тетради. Ответы проверяются и фиксируются на доске учителем. Задания, вызвавшие затруднения, разбираются учителем или одним из учеников на доске.

Решите уравнение или неравенство (список задач написан на доске):

1) ;

2) ;

3) ;

4) ;

5) ;

6) ;

7) ;

8) .

4. Подведение итогов занятия.

Учитель выставляет баллы за работу на занятии. Если решены первые четыре задания - 1 балл, за задания 5-8 по одному баллу. Всего за урок можно получить 5 баллов.

5. Постановка домашнего задания.

1) Решите уравнение .

Решите уравнение .

Решите неравенство .

Подготовить доклады на тему «Способы доказательства возрастания (убывания) функций» (по определению, с помощью производной) и «Как монотонность помогает решать уравнения и неравенства» (сформулировать теоремы о корне, 1 доказать). Это задание выполняют два ученика по желанию.

Занятие №3 Тема: «Использование монотонности функций»

Цели:

а) познакомить учащихся с методом решения уравнений и неравенств, основанном на применении монотонности функций;

б) обобщить и систематизировать знания учащихся о монотонности функций, способах исследования функции на монотонность.

Ход занятия:

1. Проверка домашнего задания. Решение первого задания учитель разбирает устно, ученики проверяют в тетради. Решение 2-ого и 3-его один ученик выписывает на доску до начала занятия. Школьники сверяют со своим решением, учитель комментирует решение.

2. Изучение нового материала.

1) Доклад «Способы доказательства возрастания (убывания) функций».

2) Доклад «Как монотонность помогает решать уравнения и неравенства».

3) Учитель делает выводы по докладам.

3. Решение задач. Список задач написан на доске. 1-ое задание разбирается учителем. На остальные дается время для самостоятельного решения. После ученики по желанию показывают свое решение на доске.

Решите уравнение или неравенство:

1) ;

2) ;

3) ;

4) ;

5) ;

6) ;

7) .

4. Подведение итогов занятия.

Учитель выставляет баллы за работу на занятии. По одному баллу за доклад, по одному баллу за каждую задачу, решенную у доски.

5. Постановка домашнего задания.

1) ;

2) ;

3)

4) .

Занятие №4 Тема: «Уравнения вида .»

Цель: систематизировать и обобщить знания о методе решения уравнений вида .

Ход занятия:

1. Организационный момент. Постановка целей занятия, темы и плана его проведения.

2. Проверка домашнего задания. Решение каждой задачи с места объясняют ученики. Если нужно, учитель корректирует и комментирует ответы учеников.

3. Решение задач. Решение первой задачи учитель подробно разбирает на доске.

1) .

В обеих частях уравнения стоят функции, похожие внешне. Поэтому имеет смысл рассмотреть функцию .

_ Назовите область определения этой функции (R).

_ Исследуйте функцию на монотонность (убывает на R).

Если выполняются эти условия, то исходное уравнение равносильно уравнению . Найдем корни этого уравнения, они будут корнями исходного уравнения.

2) . В этом задании следует обратить внимание учеников на то, что функция определена не на всей числовой прямой, поэтому уравнение равносильно системе ;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.