Рефераты. Классификация живых систем

p align="left">Весьма своеобразным вариантом гетерогенной ценометабионтной системы являются лишайники. При бесспорно симбиоти-ческой структуре их талломов и столь же очевидной генетической обособленности микобионта и фикобионта, они в то же время имеют ряд особенностей, характерных для организменных ценометабионтных систем.

В этом смысле совершенно исключительный интерес представляет, по мнению автора, полная аналогия некоторых эволюционно прогрессивных способов вегетативного размножения, специфических для лишайников и типично ценометабионтных пелагических гидроидных полипов -- сифонофор. Тем и другим свойствен способ вегетативного размножения, состоящий в отделении фрагментов тела, содержащих минимальный комплект функционально необходимых структур, совокупность которых может дать начало новому организму. У лишайников такие фрагменты представлены изидиями и соредиями, т. е. маленькими клубочками гиф микобионта с находящимися между ними немногими клетками фикобионта, причем клубочки эти либо покрыты специальным коровым слоем, либо не имеют его. У сифонофор имеются аналогичные, по функциональному назначению, образования -- кормидии, представляющие собою структурно обособленные группы важнейших органов. В состав кормидия входит обычно один кормящий полип -- гастрозоид, один пальпон, выполняющий, как полагают, выделительные функции, и два гонофора, несущих половую функцию.

Функциональная аналогия соредии, изидий и кормидиев, несомненно, подтверждает закономерный характер возникновения подобного способа размножения у ценометабионтов и в этом смысле имеет совершенно исключительное значение для правильной интерпретации агрегатной структуры ценометабионтных организменных систем: названные фрагменты -- соредии, изидии и кормидии -- представляют собою элементарные единицы новой ценометабионтной организменной структуры. Именно поэтому в рассмотренных случаях вегетативного размножения лишайников и сифонофор происходит отделение уже не отдельных метабионтных структур, филогенетически соответствующих первичным особям изначальной колонии, а функционально целостного комплекса функционально различных коадаптированных метабионтов, выполняющих функции конкретных органов. Этот факт служит, по мнению автора, одним из веских доказательств организменного уровня ценометабионтной системы как в случае лишайников, так и в случае сифонофор.

Строго говоря, не все лишайники формально могут быть отнесены к ленометабионтам, поскольку фикобионт чаще всего представлен не мета-бионтом, а монобионтом, т. е. цианобактериями или одноклеточными водорослями, и, соответственно, слоевище лишайника чаще всего имеет моно-метабионтную основу, а не мета-мета бионтную, как у рассмотренных выше зоологических ценометабионтных систем.

Только в более редких случаях в талломе лишайника фикобионт, как и микобионт, является многоклеточным, что имеет место, когда фикобион-том служит, например, какая-то зеленая нитчатая водоросль, в частности Trentepolia; только в подобных случаях лишайник формально является ценометабионтом. Тем не менее общие черты ценометабионтной системы третьего организменного уровня свойственны лишайникам и при наличии монобионтного фикобионта, что подтверждается хотя бы наличием у них и в этом случае изидий и соредий. Эти и другие вопросы, связанные с определением уровня функциональной организации лишайников, подробнее обсуждаются в п. 3.3.

Таким образом, ценометабионты представлены только животными и лишайниками, причем из животных ценометабионтная конструкция тела оказалась доступной только для сравнительно примитивных групп -- кишечнополостных, сгибающихся, мшанок, полухордовых и оболочников. По своему происхождению ценометабионтные животные и лишацники принципиально различны. Ценометабионтные животные исторически возникли в результате прогрессирующей незавершенности процесса вегетативного деления метабионтов, за счет чего на основе структурной агрегации организменной системы было достигнуто экологически целесообразное усложнение ее функциональной структуры. В данном случае, следовательно, онтогенез исторически изменялся таким образом, что в результате почкования метабионтного организма вместо колонии структурно обособленных метабионтов стал возникать единый сложный цено-метабионтный организм. Лишайники же сформировались в результате совершенно иного процесса -- прогрессирующего симбиотического сближения изначально экологически независимых живых систем -- гриба и фикобионта, функцию которого в разных случаях выполняли цианобак-терии или водоросли.

Большинство ценометабионтных животных относится к числу прикрепленных форм. Исключение составляют лишь очень немногие ползающие кораллы и ползающие мшанки, а также пелагические сифонофоры, пиросомы и бочоночники. Несомненно, что ограниченность круга це-нометабионтов примитивными, преимущественно прикрепленными животными непосредственно связана с происхождением ценометабионтной организменной структуры путем видоизменения процесса вегетативного размножения, которое, как и прикрепленный образ жизни, у более высокоорганизованных групп животных не встречается. Именно поэтому, надо полагать, такие группы животных, как членистоногие и позвоночные, не дали ценометабионтных вариантов организменной структуры.

Во всех случаях возникновение ценометабионтной конструкции тела было связано, как мы видели, с усложнением его агрегатной структуры, что повлекло за собою и усложнение его информационной структуры. На первых стадиях ценометабионтности, как и на ранних этапах метабионт-ности, централизация организменной системы была относительно слабой.

Эту относительно раннюю стадию становления ценометабионтной орга-низменности у животных мы можем видеть на примере ценометабионтных гидроидных полипов, у которых еще отсутствует единая нервная система, хотя уже имеется единая гастральная полость, т. е. трофическая и транспортная функции уже централизованы. Примерами наиболее высокоорганизованных ценометабионтов могут служить их подвижные формы, в частности пелагические планктонные сифонофоры и ползающие коралловые полипы -- морские перья; у тех *и других имеется уже единая нервная система. Высокая степень централизации ценометабионтной организменной системы характерна для ползающих мшанок и планктонных бочоночников.

С усилением функционально-структурной интеграции ценометабионтной организменной системы ее собственная программа развития становится более централизованной на основе усложнения взаимодействий ее структурных блоков, т. е. первичных метабионтов, образующих ценометабионт-ную систему. Генетическая программа развития ценометабионтов, как и в случае метабионтов, централизована лишь на монобионтной, т. е. клеточном уровне.

Третий организменный уровень функциональной организации живой системы, представленный ценометабионтами, является, как видно из изложенного, результатом очередного -- третьего в истории биологической эволюции -- этапа структурной агрегации, в ходе которого произошло новое усложнение функционально-структурной и информационной организации живой системы. В этом процессе следует особо отметить развитие новой -- ценометабионтной компартментализации тела, основанной на глубокой специализации исходных метабионтов и фактическом превращении их в органы, выполняющие конкретные жизненно важные функции в масштабах ценометабионтной организменной системы. При этом централизация собственной программы развития живой системы получила выражение уже на межметабионтном уровне, вследствие чего метабионтные программы исходных организмов-метабионтов сохранили лишь подчиненное значение и в информационной структуре третьего организменного уровня стали коадаптированными подпрограммами.

Поскольку ценометабионтная организменная система в своем возникновении ограничена наличием определенного способа вегетативного размножения метабионтов и поскольку она экологически связана с прикрепленными или медленно плавающими планктонными вариантами экоморф, она не получила столь широкого распространения в органическом мире, как монобионтная и особенно метабионтная системы, а напротив, как всякая узкоадаптированная система оказалась целесообразной только в сравнительно немногих случаях и была реализована только в весьма ограниченном числе вариантов.

Таким образом, существуют три уровня функциональной организации организменных живых систем, представленные, соответственно, моно-бионтами, метабионтами и ценометабионтами.

Надорганизменные живые системы

Поскольку все надорганизменные живые системы представляют *собою те или иные ассоциации организмов, они подразделяются на три группы, соответственно уровням функциональной организации тех организмов, которыми они образованы: 1) живые системы первого надорганизменного уровня, представленные ассоциациями монобионтов; 2) живые системы второго надорганизменного уровня, образованные ассоциациями метабионтов и 3) живые системы третьего надорганизменного уровня, образованные ассоциациями ценометабионтов. Наряду с этими группами существует адекватная им четвертая группа, представленная гетерогенными ассоциациями, состоящими одновременно из представителей первых трех групп.

Первый надорганизменвый уровень функциональной организации живой системы соответствует различным ассоциациям монобионтов -- их популяциям, колониям, группам и т. п. Функционально-структурная-целостность всех этих ассоциаций обеспечивается на уровне межорганиз-менных взаимодействий, в ходе которых, на основе генетических программ' конкретных организмов и при воздействии комплекса факторов окружающей среды, в каждый данный момент определяется стратегия развития надорганизменной системы как целого. Программа развития надорганиз-менной системы формируется, следовательно, как интегральный результат взаимодействия монобионтов друг с другом и с окружающей их средой,, хорошим примером чего могут служить хотя бы популяции одноклеточных жгутиковых водорослей типа Dunaliella или Chlamydomonas, которые при определенных условиях размножаются вегетативно, а при изменении этих условий начинают копулировать по типу гологамии.

Второй надорганизменный уровень функциональной организации живой системы представлен ассоциациями метабионтов -- их популяциями, колониями, семьями и т. п. Функционально-структурная целостность всех этих систем, как и в надорганизменных системах монобионтов, обеспечена на уровне межорганизменных взаимодействий, однако эти взаимодействия по своему характеру более разнообразны и у высокоорганизованных Metazoa достигают исключительно высокой сложности. По своей функциональной и информационной структуре метабионтные надорганизменные системы в целом значительно сложнее монобионтных.

Третий надорганизменный уровень функциональной организации живой системы представлен ассоциациями ценометабионтов -- их популяциями, колониями й т. д. Как уже было отмечено выше, ценометабионтные организмы в зоологии обычно именуются «колониями», что, по представлениям автора, явно противоречит фактической стороне дела и является отражением устаревших традиционных концепций, далеких от системного подхода. В действительности же, как следует из п. 2.2, колониями являются не сами организмы-ценометабионты, такие, как кораллы или мшанки, а образуемые ими надорганизменные ассоциации.

Примером простейшей ассоциации ценометабионтов может служить поселение мшанок, системная целостность которого обусловлена, в частности, генеративными связями отдельных гермафродйтных ценометабионтных особей, которые в процессе полового размножения обмениваются сперматозоидами. В ряде случаев внутрипопуляционная коадаптация ценометабионтов привела к возникновению более сложных систем надорга-низменного уровня. Из них наибольшей системной сложностью отличаются колонии ценометабионтных кораллов -- коралловые рифы, закономерная структура и упорядоченность развития которых общеизвестны. Системный характер кораллового рифа обусловлен сложной совокупностью иерархически организованных подсистем, т. е. живых систем различного структурного уровня, собственные программы развития которых объединяются, образуя единую интегральную программу развития рифа как целостной системы.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.