Рефераты. Особенности термического режима рек

p align="left"> 3. Физические закономерности изменения температуры воды по глубине, ширине и длине рек

Факторы локального изменения температуры воды в поперечном сечении русла, на отдельной скоростной вертикали и в точке потока сводятся к процессам, влияющим на поступление, поглощение и перераспределение поглощенного тепла в водной массе, на изменение ее теплосодержания. К числу этих процессов относятся адвекция тепла с вышележащих участков реки, его дисперсия, вызванная наличием поперечного градиента температуры воды, и конвекция, обусловливающая вертикальное перемешивание водной массы (Алексеевский, 2006).

3.1 Уравнение теплопроводности

В общем случае к элементарному объему воды V поступают тепловые потоки Qi через все грани и вдоль каждой координатной оси (рис. 3.1). Потоки тепла через грани Q1, Q2, Q3, Q4, Q5, Q6 соответственно равны адвекции тепла с вышележащих участков реки и его выносу ниже по течению, поступлению тепла в результате дисперсии, его удаление в объеме поперечного переноса речной воды, удаление и поступление тепла в результате процесса конвективного теплопереноса. Перераспределение тепла по всем направлениям в пределах объема dV также связано с процессами турбулентного перемешивания и физической теплопроводности. В общем случае Q1Q2, Q3Q4, Q5Q6. Это приводит к изменению теплосодержания в этом объеме воды и ее температуры.

Рис. 3.1 Схема к поступлению и удалению тепла на гранях элементарного объема воды

Изменение потоков тепла вследствие физической (молекулярной) теплопроводности учитывается уравнением (Караушев, 1969)

(3.1)

где - тепловой поток по i-му координатному направлению, обусловленный физической теплопроводностью, V - объем воды, - интервал времени. В соответствии с законом Фурье поток теплоты (Вт/м2), обусловленный этим механизмом теплопередачи, пропорционален градиенту температуры по направлению i и коэффициенту физической теплопроводности (Вт/м2 0С):

. (3.2)

Замена в уравнении (3.1) соотношением (3.2) приводит к выражению:

. (3.3)

Считая, что температурное поле изотропно (т.е. ) получаем:

. (3.4)

Поскольку сумма изменений частных потоков тождественно равна изменению теплосодержания (в соответствии с уравнение (2.1)), то

, (3.5)

где С - удельная теплоемкость, ? - плотность воды. Раскрытие полной производной d/dt преобразует уравнение (3.5) к уравнению теплопроводности (уравнению Фурье-Кирхгофа)

, (3.6)

где v, u, w - продольная, поперечная и вертикальная компоненты скорости соответственно. Члены, связанные с ними учитывают вклад процессов адвекции, дисперсии и конвекции в изменение температуры воды. Отношение называется коэффициентом температуропроводности (м2/с).

В водных потоках изменение теплового состояния в основном зависит от турбулентного теплопереноса. Суммарный эффект влияния физической теплопроводности и турбулентного теплопереноса с учетом осреднения всех членов уравнения (3.6) дает (Алексеевский, 2006):

, (3.7)

где - температура; , , , - осредненные, а , - пульсационные продольная, поперечная и вертикальная компоненты скорости течения. Условия переноса тепла в турбулентных потоках характеризует коэффициент турбулентной температуропроводности Он интегрально учитывает роль конвективной, адвективной, дисперсионной, а также турбулентной теплопередачи в суммарном изменении температуры объема воды. Роль физической теплопроводности несущественна по сравнению с турбулентным теплопереносом, поэтому уравнение (3.7) трансформируется к виду (Алексеевский, 2006):

, (3.8)

в котором использовано условие изотропности температурного поля (). Более точным является выражение:

(3.9)

3.2 Эпюры вертикального распределения температуры воды

Закономерности вертикального изменения температуры воды в реках изучены недостаточно. Первый способ теоретического описания распределения температуры воды по глубине реки был предложен В.А. Бергом (1962). Теоретические эпюры температуры хорошо согласуются с реальным изменением температуры воды по вертикали. Однако их получение трудоемко и ограничено условиями постановки решаемой задачи. В общем случае формулу для расчета теоретической эпюры температуры можно получить из уравнения (3.9). Для случая установившегося равномерного движения потока (), отсутствия поперечных составляющих осредненной скорости, неизменных по длине потока x и его ширине z температур:

(3.10)

Производные в этом уравнении полные, поскольку учитывается изменение лишь по одному координатному направлению. Согласно А.В. Караушеву (Караушев, 1977), коэффициент турбулентной диффузии

, (3.11)

где h - глубина потока, v - скорость течения в данной точке потока, а

M = 0,7Cш+6 (3.12)

при и M = 48 = const при . Этот параметр, как и коэффициент Шези, имеет размерность м0,5с-1. Коэффициент Шези

. (3.13)

Подстановка в уравнение (3.10) значение коэффициента турбулентной диффузии (3.11) и соответствующие преобразования дают

(3.14)

Решение этого уравнения имеет вид:

(3.15)

где 1 и 2 - постоянные интегрирования. Замена в этом уравнении глубины потока относительной глубиной потока , а также введение константы a1 = С/g = 427 м/0К приводит к уравнению

(3.16)

В качестве константы интегрирования 1 примем придонную температуру потока, а 2 - разность температуры воды в поверхностном слое n реки и температурой у дна 1, т.е. 2 = n - 1. Относительную глубину будем учитывать со знаком «-» для получения прямой температурной стратификации в период весеннего и летнего нагревания водной массы. Такая необходимость связана с выбором начала координат. Относительная глубина у поверхности, а необходимая для этого коррекция соответствует вынесению знака «-» в показатель степени при экспоненте в уравнении (3.16). В этом случае эпюра температуры воды описывается уравнением:

. (3.17)

Таким образом, распределение температуры воды по глубине потока зависит от глубины потока и коэффициента шерховатости, температуры воды в придонном и в поверхностном слое потока, а также от коэффициента а1.

3.3 Поперечное и продольное распределение температуры воды

Оценим поперечное распределение температуры воды для условий, когда изменение температуры воды по длине потока стационарно и неизменно, течение установившееся и равномерное, поперечные и вертикальные составляющие осредненной скорости равны нулю. Указанные условия означают, что процессы адвекции тепла на локальном участке реки отсутствуют и, следовательно, уравнение теплопроводности (3.8) имеет вид

(3.18)

Аналитическое решение этого уравнения в общем случае отсутствует. Оно появляется при использовании полученного выше теоретического распределения температуры воды по глубине потока. Такой подход (по аналогии с методом плоских сечений при построении поля скоростей на участке реки) можно назвать «1,5D», так как решение производится «одномерными» методами (Великанов, 1954).

Распределение температуры воды в поперечном сечении потока можно рассматривать с двух взаимосвязанных позиций: распределение поверхностной температуры воды по ширине потока и распределение температуры воды по всей площади поперечного сечения. Пусть распределение поверхностной температуры воды не зависит от распределения температуры воды и скорости по глубине потока. В этом случае, уравнение (3.18) приобретает вид:

(3.19)

Решение этого уравнения дает распределение поверхностной температуры воды по ширине потока. Для решения воспользуемся схемой обозначений для прямоугольного сечения русла (рис. 3.2), где В-ширина реки b=B/2 - половина ширины реки, z - расстояние от берега, y - отметка горизонта воды от дна, h - глубина потока. Использование прямоугольной схематизации русла позволяет предположить, что распределение температуры воды в поперечном сечении такой формы при прочих равных условиях симметрично, тепловое влияние обоих берегов - одинаково, влияние поверхностей раздела «вода - воздух» и «вода - ложе» также одинаково по всей ширине потока. В этом случае можно рассматривать распределение температуры воды только для одной, например, правой половины русла (считая распределение температуры в левой половине русла симметричным). В центре потока значения температуры максимально отличаются от прибрежной температуры воды.

В естественных условиях русло чаще бывает несимметричным. Поэтому заменим b на bп - расстояние от берега до «середины» потока (точки, в которой температура воды максимально отличается от прибрежной), а координату z в уравнении (3.19) - на относительное удаление от берега z/bп = (Гончаров, 1962).

Рис. 3.2. Схема принятых обозначений для прямоугольной формы поперечного сечения русла

В этом случае решение уравнения (3.19) (с учетом коэффициента турбулентной диффузии по уравнению (3.11)) имеет вид:

(3.20)

При замене a1 = С/g = 427 м/0К

(3.21)

где константа интегрирования 1n равна поверхностной температуре воды на середине потока, а 2n - разность поверхностной температуры воды у берега бn и в центральной части русла 1n т.е. 2n = бn - 1n. Показатель степени в уравнении (3.21) должен включать знак «минус» для воспроизводства экспоненциальной функцией реального распределения температуры воды по ширине потока

. (3.22)

В соответствии этой формулой, распределение температуры воды в поперечном сечении потока зависит от изменения глубины в поперечном сечении потока и коэффициента шероховатости русла.

А.В. Караушев предложил формулу (3.11) для описания распределения величины коэффициента турбулентной диффузии по глубине потока (Караушев, 1969 и др.). В последствие оказалось, что она вполне приемлема для решения и других задач, если использовать среднее значение на вертикали, в сечении или на участке реки. В этом случае в формуле (3.11) используются осредненные характеристики скорости, глубины и коэффициента шероховатости. Во многих случаях принимается справедливым условие постоянства этого коэффициента по всем координатным направлениям, хотя ближе к действительности условие (Караушев, 1977).

Практика показала, что амплитуды изменений температуры воды в поперечном сечении потока на средних и малых реках в естественных условиях малы. Вследствие этого, использование приближенного коэффициента по уравнению (3.11) не всегда оправданно. В этих случаях более точную оценку коэффициента турбулентной диффузии в поперечном сечении потока можно получить по уравнению (Bansal, 1971):

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.