Рефераты. Особенности термического режима рек

p align="left">, (3.23)

где B/h - относительная глубина, v* - динамическая скорость. Ее величина

(3.24)

где I - уклон,‰. Преобразуем формулу (3.23) для получения выражения для расчета коэффициента турбулентной дисперсии в явном виде. Для этого запишем член -2,7, как lg0,002, а последний член - lg[(B/h)1,5], тогда

. (3.25)

Таким образом, коэффициент турбулентной дисперсии зависит от глубины и ширины потока, а также от величины его уклона. Подставляя значение DTy,z в уравнение (3.19), получаем:

(3.26)

Объединив сомножители при втором члене уравнения (3.26), используя для этого формулы Шези и (3.24), в коэффициент a2 получаем выражение:

(3.27)

которое можно использовать для характеристики поперечного распределения температуры воды.

Продольное распределение температуры воды рассмотрим при некоторых условиях. Пусть изменение температуры воды по длине потока стационарно и неизменно, течение установившееся и равномерное, поперечные и вертикальные составляющие осредненной скорости равны нулю. Кроме того, будем считать, что вертикальных и поперечных градиентов температуры воды нет или они несущественны в сравнении с продольными градиентами. В этом случае уравнение турбулентной теплопроводности принимает вид (3.28).

(3.28)

Решение этого уравнения имеет вид

(3.29)

где - температура верхнего поперечного сечения данного участка реки, - разница между температурой нижнего и верхнего сечений данного участка реки.

Уравнение турбулентной теплопроводности является дифференциальной формой записи уравнения теплового баланса. Его использование в описаниях распределения температуры по глубине, ширине и длине потока соответствует смыслу использования операций дифференцирования, при стремлении к нулю изменений пространственных и временных координат (Арнольд, 1966). При большой длине участков рек и значительных интервалах времени, разделяющих начальное и конечное состояние водного потока, использование дифференциального уравнения утрачивает физический смысл. Для таких участков рек изменение теплосодержания и температуры воды характеризует уравнение теплового баланса, записанное в алгебраической форме (см. разд. 2.1). В этом случае изменение теплосодержания водной массы и средней температуры воды на участке реки во времени равно результирующей приходных и расходных составляющих потоков тепла, осредненных по длине расчетного участка.

4. Особенности вертикального распределения температуры воды по глубине реки на локальных участках

Из существующего представления о высокой интенсивности турбулентного перемешивания следует вывод об однородности температуры воды по глубине рек. Он не имеет основания, поскольку вертикальное изменение температуры в большинстве случаев незначительно. Тем не менее, тепловые состояния водотока на разных глубинах не является абсолютно однородным.

Если температуру воды рассматривать в качестве консервативной примеси, то время ее выравнивания (после локального и мгновенного изменения на поверхности) по глубине потока (Fischer, 1973), где - коэффициент турбулентной диффузии, , - время Лагранжа, - время завершения процесса смешения по глубине потока. Источником изменения поля температур в локальной точке водного потока или в локальном створе может быть при впадении притоков, отведение подогретых вод, сброс воды из водохранилища, отличающейся по тепловым характеристикам. Неоднородность вертикальной структуры поля температуры существует на небольшом участке ниже места резкого изменения температуры. Его длина зависит от соотношения средней глубины, скорости потока и : (Кондюрина, 2000). Условие означает, что ниже источника примеси достигнута вертикальная однородность температуры воды.

Оценка масштабов неоднородности температуры воды по глубине реки затруднена несовершенством технических средств для измерения этой характеристики. Поэтому существование вертикальной неоднородности температуры воды подвергалось сомнению. В начале прошлого века обсуждался, например «закон равномерного распределения температуры в реках» во все сезоны года (Максимович, 1900; Альтберг, 1916). Однако измерения Ф.И. Быдина (1933), Л.А. Ячевского (1916), В.М. Сокольникова (1935), О.В. Ванеевой и М.Н. Панкратьевой (1941), Соколовой (1951), и др. показали, что основания для выделения такого закона нет, температура воды неодинакова по глубине рек.

4.1 Характеристика полевых данных

Тем не менее, данных о реальном распределении температуры воды по глубине потока очень мало, поскольку проведение таких исследований требует специального оборудования и значительных затрат времени. Наиболее детальны и убедительны данные о вертикальном распределении температуры воды, полученные Л.А. Ячевским (1916) на р. Неве с 4 июня до 2 июля 1915 г. (пример табл. 4.1, см. приложение №4) при изучении условий формирования донного льда. Измерения температуры воды проводились ртутными термометрами с точностью 0,010С, с плота, установленного на якорях, в 50 метрах от берега, на одной вертикали и на глубинах 0,05 м, 0,5, 1, 2 и 2,5 м. Измерения выполнялись на 1,8-1,9 км выше ответвления Большой Невы от р. Невы. Одновременно проводились наблюдения за облачностью и температурой воздуха. Значения температуры снимались в 1:00, 3:00, 5:00, 7:00, 13:00, 21:00 и 23:00, что связано с проверкой гипотезы Л.А. Ячевского о влиянии облачности и температуры воздуха на образование донного льда.

Таблица 4.1. Фрагмент базы данных по температуре р. Нева в 1915 г.

температура воды, 0С на глубине, м.

Дата и время

температура воздуха, 0С

0,05

0,5

1

2

2,5

04.06.15 1:00

14,3

-

-

16,2

16,12

16,2

04.06.15 3:00

11,8

-

-

16,1

16,07

16,03

04.06.15 5:00

12,6

-

-

16

16

16

04.06.15 7:00

14,5

-

-

16,1

16,1

16,1

04.06.15 13:00

17,4

-

-

16,6

16,52

16,55

04.06.15 21:00

16,4

-

-

16,42

16,2

16,4

04.06.15 23:00

14,5

-

-

16,22

16,21

16,2

Достаточно детальные измерения вертикального распределения температуры проведены автором на р. Оке летом 2007 г. (табл. 4.2) в районе д. Трегубово (Озерский район Московской обл.). Измерения температуры воды на вертикалях производились вертушкой Нертока фирмы «Valeport», имеющей функции измерения скорости (м/с), направления течения, температуры воды (с точностью до 0,010С) и давления (мбар). Этот прибор позволяет выставлять время осреднения измерений от 1 с до 99 минут и устанавливать «ноль» давления, что обеспечивает более точно расположение вертушки на вертикали. Поскольку вертушка Нертока неинерционная, то осреднение, использованное во время измерений, составляет 1 мин. Вертикали делались на расстоянии 5-10 м от берега и далее по поперечному сечению реки через каждые 50 м. Точки измерений засекались с помощью GPS. На вертикали измерения температуры воды производились на глубинах 0,1 м, 0,5 м, 1 м, и далее через 1 м до дна. Измерения проводились в солнечную погоду, в различное время светлой части суток.

Таблица 4.2. Фрагмент базы данных автора по измерениям температуры воды в р. Ока

Координаты вертикали

Дата

Время

Температура, 0С

Глубина, м

Скорость течения, м/с

N

E

54055'5,9''

38045'2,1''

18-06-07

16:39:22

23,39

0,17

0,443

18-06-07

16:40:22

23,35

0,56

0,448

18-06-07

16:41:22

23,30

1,00

0,452

18-06-07

16:42:22

23,27

1,97

0,409

18-06-07

16:43:22

23,27

3,03

0,378

18-06-07

16:44:22

23,26

3,39

0,27

Измерения проводились в 4-х поперечных сечениях реки. Один из них располагался на участке одиночного разветвления (рис. 4.1, 1), в правом рукаве с 13:11 по 13:52, в левом рукаве - с 18:50 по 19:41. В левом рукаве (В=95 м, B/h=63), вертикали назначались в среднем каждые 16 м. Измерения проведены на 6 вертикалях. Русло левого рукава заросшее, больше половины ширины рукава занято водной растительностью. В правом рукаве (В=231 м, B/h=195), вертикали располагались каждые 21 м. Измерения здесь выполнены на 9 вертикалях. Весь день (17.06.2007) была солнечная погода, ?возд=24-300С, вода в реке за день нагрелась на 10С (по данным наблюдений на водомерном посту).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.