Рефераты. Особенности термического режима рек

p align="left">Перемешивание водной массы приводит к тому, что различия температуры на вертикали за все время измерений не превышали 0,720. Однако, эта величина достаточно большая, что позволяет говорить об умеренном характере влияния перемешивания воды на вертикальное распределение температуры воды. Можно предложить две гипотезы, объясняющие эти особенности распределения температуры воды с глубиной: 1) турбулентность водного потока не является определяющим фактором в перемешивании водной массы и 2) поскольку наблюдения производились в придельтовом участке реки, то влияние турбулентного перемешивания уменьшается вследствие снижения скорости течения. Водная масса в целом хорошо перемешана, поэтому отличия температуры воды на разном удалении от поверхности не столь велики по сравнению с водоемами. Скорость течения воды мала настолько, что турбулентное перемешивание не достаточно интенсивно для разрушения температурной стратификации.

Обработка данных по 145 эпюрам температуры на одной вертикали р. Нева показала (рис. 4.10), что изменение температуры воды по глубине реки (h = 2,5 м), в основном составляет 0,10С. За время измерений (22 дня) перепад температур воды по глубине потока колебался от 0,02 до 0,490С. Это довольно большая величина по сравнению с данными, полученными для рек с большими скоростями течения и большей интенсивностью турбулентного перемешивания.

Анализ данных по 34 вертикалям, находящимся на разном расстоянии от берега р. Оки, отличающимся по глубине и средней скорости течения, показывает, что изменение температуры воды ??э по глубине потока находится в пределах от 0 до 0,130С.

Рис. 4.10. Гистограмма значений ??э для р. Нева

Повторяемость величин максимальных перепадов температуры воды (рис. 4.11) существенно неодинакова. Наиболее часто максимальная разность температур воды по глубине потока составляет 0,010С. В 73,6% случаев эта разность и лишь в 26,4% она превышает 0,02. Максимальная величина .

Степень однородности значений ? по глубине мало зависит от расположения вертикали по отношению к берегам реки. В трех из 7 случаев полная однородность температуры воды наблюдалась возле берега, а в остальных случаях - близко к стрежню потока. Устойчивой связи, между величиной изменения температуры воды на вертикали и числом Рейнольдса не обнаружено (рис. 4.12).

Наибольшие вертикальные градиенты температуры воды чаще формируются на небольшом расстоянии от берега (15 м), при глубине потока h >2 м и скорости течения м/с. Гистограммы ??э при средних скоростях течения на вертикали м/с (рис. 4.13) обнаруживают выраженную неравномерность температуры воды для всех вертикалей. Тем не менее, пока данных недостаточно для однозначного утверждения об увеличении вертикальных аномалий температуры воды при переходе от поверхностных к придонным слоям воды на участках рек при уменьшении скоростей течения. Наибольший градиент 0,130С, например, соответствует средней скорости на вертикали 0,4 м/с.

Рис. 4.11. Изменчивость величины ??э на разных вертикалях р. Ока

Рис. 4.12. Соотношение максимальной разности температуры воды на вертикали и числом Рейнольдса (р. Ока, июнь 2007 г.)

Рис. 4.13. Гистограмма распределения значений ??э при средней скорости на вертикали v < 0,2 м/с

Характер распределения температуры воды по глубине потока учитывает и градиент температуры grad? (в 0С/м). Изменчивость этой характеристики для р. Ока характеризует гистограмма на рис. 4.14. Из нее следует, что градиенты температуры воды меняются от 0 до 0,20С/м. Для большинства случаев grad? равен < 0,030С/м. Чем больше градиент температуры воды, тем меньше вероятность его формирования.

Изменение градиентов температуры воды по глубине р. Оки, например, характеризует рис. 4.15. Из рисунка следует, что величина градиента больше 0,050С не встречается в слое воды y > 1 м, где y - расстояние от поверхности воды до точки измерений. При y > 2 м практически отсутствуют градиенты температуры, превышающие 0,020С. Единственная вертикаль, на которой нарушается это правило, находится в русловом карьере, где распределение температуры воды имеет более сложный характер (рис. 4.16). Здесь, вероятно, на глубинах 5-7 м формируется противотечение, поставляющее более теплую воду на значительные глубины. В переуглубленном русле реки возникают процессы, подобные процессам в водоемах, которые влияют на формирование типичных распределений гидрофизических характеристик по глубине водного объекта.

Рис. 4.14. Гистограмма распределения максимального вертикального градиента температур для условий р. Ока

Рис. 4.15. Изменчивость локальных значений градиента температуры по глубине р. Ока

Рис. 4.16. Распределение температуры воды по глубине на р. Ока в пределах руслового карьера

Данные, полученные на р. Протве, характеризуют разнообразие условий формирования эпюр температуры. Оценка величины изменения температуры воды на вертикалях (рис. 4.17) показывает, что наиболее часто встречаются эпюры температур с величиной ??э = 0,01 - 0,08. В большинстве случаев они формируются в пределах водной массы Протвы и Исьмы. Все вертикали, для которых изменение температуры воды ??э > 0,10С, находятся в зоне смешения. Следовательно, смешение вод сопровождается своеобразным «гашением» турбулентности, что и обусловливает большую вертикальную неоднородность водной массы в зоне смешения речных вод. Часть вертикалей, для которых величина ??э < 0,10С находится в зоне смешения водных масс рек (рис. 4.18). Средняя температура воды здесь выше, чем в р. Исьма (на 1-1,50С), и ниже по сравнению с Протвой. Это свидетельствует о формировании подзоны смешения с чертами процесса, соответствующими рр. Протва и Исьма.

Рис. 4.17. Изменчивость величины ??э на разных вертикалях р. Протва, июнь 2007 г.

Рис. 4.18. Распределение величины ??э на разных вертикалях р. Протва и р. Исьма

Рис. 4.19. Эпюры в водной массе р. Протва (1), р. Исьма(2) и в зоне смешения

Сравнение температурных эпюр в р. Протва, р. Исьма и в зоне их смешения (рис. 4.19) показывает, что форма эпюр в водных массах этих рек значительно слабее выражена, чем в зоне смешения. Величина максимального изменения температуры воды ??э в зоне смешения может достигать 1,380С, тогда как в Протве и Исьме эта величина обычно <0,10C.

Вертикальные градиенты температуры чаще всего (в 60% случаев) меньше 0,10С/м. Градиенты более 20С/м встречаются в 7% случаев. Самые большие величины grad? наблюдаются в приповерхностном слое воды при переходе от глубины 0,03 к 0,1 м, здесь градиенты температуры достигают 7,710С/м, однако встречаются и случаи grad? = 0. Это свидетельствует о большом разнообразии теплового состояния поверхностного слоя, зависящим, в частности, от изменения глубины реки.

Анализ данных, полученных на плесе и перекате (рис. 4.20) в р. Протва свидетельствуют о подобии градиентов температуры воды и разности ??э на разных вертикалях. Для плеса grad? для различных вертикалей меняется от 0 до 0,030С, а для переката эта величина меняется от 0 до 0,050С, т.е. различий между ними практически нет. В приповерхностном слое (0,03 - 0,1 м) величина градиента температур составляет 0,530С/м. Она отражает краткосрочную синоптическую обстановку теплового взаимодействия между водной массой реки и приводным слоем атмосферы.

Выявленные особенности изменения температуры воды по глубине рр. Ока, Протва и Исьма не являются характерными для всех рек. В частности, для многих рек свойственна большая вертикальная неоднородность температур. Экстремально большие различия температуры воды по глубине характерны, например, для истока Ангары (Верещагин, 1933). Максимальная разность температур по глубине реки здесь достигает 70С, что связано с озерным генезисом ее вод. Большие вертикальные температурные градиенты характерны и для некоторых устьев крупных северных рек. В районе Усть-Енисейского порта придонная и поверхностная температуры могут отличаться на 60С (Соколова, 1951). По ее же данным на р. Лена (с. Кюсюр) в период летнего нагревания водной массы разность температуры воды поверхностного и придонного слоя воды достигает 0,40С. В период ее охлаждения эта разность еще больше - 1,10С, при этом придонная температура воды оказывается больше поверхностной. На р. Лена у с. Солянка наибольшие положительные разности ??э наблюдаются в июне, июле и августе (период нагревания) и достигают 1,550С. В период последующего охлаждения температура воды в потоке выравнивается, а в конце сентября и начале октября возникает обратная температурная стратификация (??э > -0,60С).

Обработка данных наблюдений на р. Оке позволяет выделить две характерные формы эпюр температуры: равномерную и неравномерную. Неравномерная эпюра температуры воды включает три зоны: приповерхностная, придонная и центральная. В первой зоне характер изменения ? зависит от теплообмена на границе «вода-воздух», во второй - от условий теплообмена на границе «вода-грунт». В пределах этих двух зон характерны три возможные формы эпюры по изменению температуры с глубиной: убывающая, возрастающая и однородная. Эпюра центральной зоны водной массы в общем случае имеет произвольную форму, зависящую от локальных условий турбулентного перераспределения объемов воды с разной температурой. Следовательно, можно выделить 9 возможных типов эпюры температуры, соответствующих особому характеру распределения ? в приповерхностном и придонном слоях водной массы (рис. 4.21). В схематическом виде они соответствуют разнообразию направлений переноса потоков тепла на границах водной массы с ложем реки и атмосферой, физических механизмов изменения температуры воды в центральной части водного потока, которые требуют выявления и изучения. Поэтому для схем на рис. 4.20 центральная зона условно дана пунктирной линией, соединяющей приповерхностную и придонную зоны эпюры температуры воды.

Рис. 4.21. Возможные типы (1,2,3,4,5,6,7,8,9) температурных эпюр на границе водной массы и русел рек, приземного слоя атмосферы

Форма нижней части эпюры зависит от направления потока тепла, формирующегося при поступлении грунтовых вод или тепловом взаимодействии речной водной массы с грунтами. Если поток тепла на границе «вода-ложе» отсутствует, то формируются эпюры типа 1,2,3. Если он направлен в сторону водной массы (ее теплосодержание возрастает), то преобладает формы эпюр типа 4,5,6. Такие типы эпюр могут возникать в зимний период при разгрузке относительно теплых грунтовых вод или в период весеннего нагревания, когда ложе потока нагревается быстрее, по сравнению с водной массой. Если поток тепла направлен от водной массы к грунтам, то происходит охлаждение водной массы. Это может происходить в летний период при поступлении в основной поток охлаждающих грунтовых вод и в период осеннего охлаждения, когда ложе потока охлаждается быстрее, чем водная масса. Типы эпюр 3,6,9 формируются при равенстве потоков тепла от грунта к водному объекту и в обратном направлении.

Форма верхней части эпюры зависит от многих факторов, влияющих на теплообмен на границе «река-атмосфера». Типы 1,4,7 соответствуют охлаждению водной массы за счет теплообмена с атмосферой. На реках такие формы эпюры формируются в период суточного, синоптического или сезонного охлаждения водной массы. Типы эпюр 2,5,8 в естественных условиях формируются в период суточного, синоптического или сезонного нагревания водной массы. Типы эпюр 3,6,9 возникают в том случае, если тепловое взаимодействие атмосферы и речной водной массы уравновешено. Они могут формироваться в утренние и вечерние часы, когда интенсивность солнечной радиации компенсируется эффективным излучением воды. Кроме того, нередко формирование такой формы эпюры у берегов при малых глубинах и малых скоростях течения. При очень больших скоростях течения происходит практически полное смешивание различных слоев водной массы, поэтому в любую погоду, независимо от сезона, эпюра температур выражена слабо.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.