Рефераты. Особенности термического режима рек

p align="left">На втором, третьем и четвертом поперечных профилях измерения выполнены в один день (18.06.07) в фазу дневного нагревания (с 16:39 до 20:11) при солнечной погоде и температуре воздуха ?возд=24-300С.

Рис. 4.1. Схема участка р. Ока с расположением створов наблюдений

Второй профиль располагался на 100 м выше подводного руслового карьера (В=270 м, B/h=144). Водное пространство по левому берегу покрыто кувшинками, занято тростником. По ширине профиля вертикали назначались в среднем через каждые 27 м. Наблюдения проведены на 7 вертикалях.

Третий профиль располагался на верхней границе карьера: на одной из вертикалей глубиной до 10 м (В=260, B/h=67) измерялись температуры воды. Измерения на вертикалях проводились в среднем через 33 м. Всего изучались эпюры 6 вертикалей.

Четвертый профиль пересекал карьер в створе, ширина которого составляла В=250 м (B/h=55,3). Измерения на вертикалях проводились в среднем через 28 м. Всего анализировалось 6 вертикалей.

Дополнительные материалы автором получены летом 2008 на р. Протва в районе д. Сатино (Калужская обл.) с помощью комплексного зонда YSI (рис. 4.2). Наблюдения проводились в различных морфологических и динамических условиях. Измерения температуры выполнены на нескольких вертикалях в пределах каждого створ реки. Измерения на всех вертикалях осуществлялись на разных глубинах (0,1, 0,5, 1 м и далее через 1 м до дна). Один створ расположился в плесе (табл. 4.3), другой - на перекате. Измерения проводились 02.07.2008 в дневные часы в солнечную погоду. Ширина плеса B составляла 20 м, средняя глубина hср= 1,05 м. Ширина переката B=45 м, средняя глубина hср= 0,35 м.

Рис. 4.2. Комплексный зонд YSI

Несколько распределений температуры по глубине были изучены 03.07.2008. Они располагались в зоне слияния р. Исьма и р. Протва в соответствии со схемой на рис. 4.3. Работы проводились в солнечную погоду при температуре воздуха 24-280С с 10:30 до 18:00. Результаты наблюдений приведены в Приложении №4. Температура воды в Протве в период измерений в узле ее слияния с р. Исьма (рис. 4.4) составляла ? = 20,3-20,9 0С, в Исьме - ? = 16,6 - 17,10С. Поэтому особенности температурных эпюр изначально соответствовали условиям формирования теплового состояния воды Исьмы, Протвы и зоны смешения водных масс этих рек.

Измерения температуры воды на вертикалях в узле слияния Исьмы и Протвы проводились в основном на стандартных горизонтах: 0,1 м, 0,5 м, 1 м и далее до дна через 1 м. На профиле 6 и в точках 4,5,6 профиля 5 (рис. 4.2) измерения выполнялись также на глубине 0,03 см с целью оценить изменение температуры в приповерхностном слое воды.

Рис. 4.3. Район проведения исследования поля температуры в области слияния рр. Протва и Исьма.

Рис. 4.4. Узел слияния рр. Протвы и Исьмы в июле 2008 г.

Таблица 4.3. Результаты измерений температуры в плесе р. Протвы 2008 г.

№ вертикали

Глубина, м

Температура, 0С

Расстояние от л.б.

1

0,1

17,88

0,5

0,7

17,85

2

0,1

17,83

6,5

0,6

17,82

1

17,82

1,8

17,82

3

0,1

17,85

10,5

0,5

17,85

1

17,85

1,3

17,85

4

0,1

17,89

12,5

0,5

17,88

0,95

17,89

5

0,1

17,89

19,5

0,4

17,89

4.2 Анализ фактических данных

Распределение температуры воды на вертикали зависит от сезона года, синоптических условий, глубины рек, морфологии русла, расстоянии от берега до точки измерений, скорости течения и времени суток. Характер распределения отражает изменение температуры воды по глубине рек (рис. 4.5). Обычно оно равно разнице температур поверхностного и придонного слоя воды (??э) (Соколова, 1951). Измерения автора и других специалистов (Ячевский, 1916) показывают, что максимальная величина разницы температур может возникать не только в этих слоях водной массы, но и в ее промежуточных слоях.

Рис. 4.5. Распределение температуры воды на вертикали в устье р. Невы

Изменение температуры воды на вертикали обычно относительно мало. Поэтому ее значения на смежных горизонтах связаны линейным уравнением с угловым коэффициентом близким к 1 (рис. 4.6-4.7).

Для графика на рис. 4.6: ?1 = ?0,5 - 0,04 (коэффициент корреляции r = 0,998), а для графика на рис. 4.7 ?2 = 1,02?0,5 -0,45 (коэффициент корреляции r = 0,998).

Коэффициент корреляции между рядами температур на смежных горизонтах водной массы r свидетельствует о сильном перемешивании водного потока, отсутствии выраженных градиентов температуры воды на вертикали. Тем не менее, она неодинакова на разных глубинах. Разность температуры воды изменяется в разные дни от 0 до 0,720С. Отсутствие детальных данных об условиях полевых экспериментов не позволяет обосновано определить причины возникновения больших или меньших отличий температуры воды по глубине потока. Можно лишь отметить, что изменение вертикального распределения температур зависит от общего тренда изменения температуры во времени, имеет некоторые внутрисуточные особенности. Это следует из анализа эпюр температуры воды для двух дней (рис. 4.8-4.9).

Рис. 4.6. Связь температуры воды в р. Нева на глубине 0,5 м и 1 м в 13:00 за весь период наблюдений

Рис. 4.7. Связь температуры воды на р. Нева на глубине 0,5 м и 2 м в 13:00 за весь период наблюдений

В период летнего нагревания, температура водной массы в ночные часы в поверхностном метровом слое понижается по направлению к поверхности. Это связано с охлаждающим влиянием теплообмена водной массы с атмосферой в ночное время суток. В утренние часы эпюра температуры меняет форму, поскольку температура воды понижается с глубиной.

Рис. 4.8 Трансформация эпюры температур воды р. Нева во времени (1 - 1:00, 2 - 3:00, 3 - 5:00, 4 - 7:00, 5 - 13:00, 6 - 21:00 и 7 - 23:00) в условиях синоптического нагревания водной массы

Рис. 4.9. Трансформация эпюры температур в условиях синоптического охлаждения водной массы

поверхности обусловлено процессами теплообмена, поскольку воздух теплее воды (?в=180С, ?=17,930С) и поток тепла направлен в сторону водной массы. До 13:00 форма приповерхностной части эпюры сохраняется, хотя температура водывозрастает почти на 10. Это связано с активным поглощением солнечной радиацией и теплообменом между атмосферой и речной водой (?в=24,30С, ?=18,760С). В 21:00 температура воды повышается по сравнению с условиями в 13:00. Она увеличивается от поверхности до глубины 0,5 м и с 1 м до дна. В слое с 0,5 до 1 м температура воды понижается. Такое распределение может быть связано с сочетанием влияния двух факторов: излучения тепла водной поверхностью и теплообменом с атмосферой. Температура воздуха в это время суток выше температуры воды (?в=20,80С, ?=18,730С), поэтому приповерхностный слой теплее, чем вода на глубине 0,5 м. Можно предположить, что пониженные (по сравнению с более глубокими горизонтами) температуры воды в нижерасположенном слое связаны с ролью этого слоя в эффективном излучении воды. За счет эффективного излучения реки, средняя температура этой толщи воды понизилась. Одновременно турбулентный теплообмен с атмосферой способствует увеличению температуры воды по направлению к поверхности в горизонте 0 - 0,5 м. К 23:00 температура воды в целом снижалась. При этом в верхнем метровом слое температура воды понизилась на 0,10, а с увеличением глубины температура стала выше в сравнении с поверхностной. Изменение температуры воды в поверхностном слое связано с усилившимся эффективным излучением воды и небольшой разницей температуры воды и воздуха (?в=18,70С, ?=18,540С).

В период охлаждения водной массы (рис. 4.9) эпюры температур имеют одинаковый вид во все сроки на глубинах от 0,5 до 2,5 м: заметное понижение температуры при переходе от слоя 0,5 к слою 1 м, менее заметное увеличение температуры с глубиной на горизонтах 1-2 м (исключение - эпюры в 03:00 и 05:00, когда наблюдается понижение температуры с глубиной), заметное понижение температуры воды характерно для глубины 2-2,5 м. Заметное отличие эпюр есть в верхнем полуметровом слое. В 01:00, 03:00, 05:00 температура в этом слое понижается по направлению к поверхности воды. В 07:00, 13:00 и 21:00 температура воды в поверхностном слое выше, чем на глубине 0,5 м, а в 23:00 температура воды у поверхности вновь ниже, чем на глубине 0,5 м. Все эти трансформации эпюры температур сочетаются с колебанием средней на вертикали температуры воды в диапазоне 20,56 - 21,11 0С.

Таким образом, форма эпюры температур в течение суток меняется слабо, ее изменение в основном происходит в поверхностном слое воды, хотя средняя температура вертикали за день может изменяться на 10С и более. Изменение температуры в поверхностном слое воды связано с тепловым обменом между водной массой и атмосферой. Он обусловливает охлаждение воды ночью и ее нагревание днем. Общее же изменение температуры водной массы связано с суточным сочетанием составляющих теплового баланса. Ночью собственное излучение водной массы преобладает над притоком лучистой энергии, поэтому происходит охлаждение воды. При достаточной прозрачности воды, излучение и поглощение энергии характерно для всей водной массы, поэтому и охлаждение воды происходит по глубине потока приблизительно с одинаковой скоростью. В течение суток разность ? - ?в меняется от 0,49 до 5,040С. Наличие относительно холодной воды в придонных слоях водного потока (рис. 4.9) может быть связано с охлаждением водной массы вследствие разгрузки грунтовых вод.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.