Теперь давайте устроим маленький перерыв, а потом приступим к изучению собственно математики.
<перерыв>
Стереометрия, или геометрия в пространстве,-- это раздел геометрии, изучающий форму, размеры и свойства различных фигур и их положение в пространстве. Стереометрия -- слово греческого происхождения (стереос -- пространственный и метрео -- измерять).
Стереометрия, как и планиметрия, возникла и развивалась в связи с потребностями практической деятельности человека. О зарождении геометрии в Древнем Египте около 2000 лет до н.э. древнегреческий ученый Геродот (V до н.э.) писал, что египетский фараон разделил землю, дав каждому египтянину участок по жребию, и взимал соответствующим образом налог с каждого участка. Случалось, что Нил заливал тот или иной участок, тогда пострадавший обращался к царю, а царь посылал землемеров, чтобы установить, на сколько уменьшился участок, и в соответствии с этим уменьшал налог. Так возникла геометрия в Египте, а оттуда перешла в Грецию.
При строительстве даже самых примитивных сооружений необходимо было рассчитать, сколько материала пойдет на постройку, уметь вычислить расстояния между точками в пространстве и углы между прямыми и плоскостями, знать свойства простейших геометрических фигур. Так, египетские пирамиды, сооруженные за 2--3 тысячи лет до н. э., поражают точностью своих метрических соотношений, свидетельствующих, что их строители уже знали многие стереометрические положения и расчеты.
Развитие торговли и мореплавания требовало умений ориентироваться во времени и пространстве: знать сроки смены времен года, уметь определять свое местонахождение по карте, измерять расстояние и находить направление движения. Наблюдения за Солнцем, Луной, звездами и применение законов взаимного расположения прямых и плоскостей в пространстве позволили решить многие задачи небесной механики, дали начало новой науке -- астрономии.
Начиная с VII в. до н. э. в Древней Греции возникают так называемые философские школы. В них все большее значение приобретают рассуждения, с помощью которых удавалось получать новые геометрические свойства. Происходит постепенный переход от наглядно-практической к теоретической геометрии.
Одной из первых и наиболее известных таких школ была Пифагорейская (VI -- V до н.э.), названная так в честь своего основателя Пифагора. Вам хорошо известно это имя (в курсе планиметрии вы изучали теорему Пифагора о соотношении длин сторон прямоугольного треугольника). Философское объяснение устройства мира пифагорейцы тесно связывали с математикой. Выделяя стихии как первоосновы бытия, древние ученые приписывали их атомам форму правильных многогранников, а именно: атомам огня -- форму тетраэдра (рис. 1, а), земли -- гексаэдра (рис. 1, б), воздуха -- октаэдра (рис. 1, в), воды -- икосаэдра (рис. 1, г). Всей вселенной присваивалась форма додекаэдра (рис. 1, д).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9