Рефераты. Современный урок математики, требования к нему

p align="left">Технология обучения математики на основе решения задач (Р. Хазанкин).

Эта технология основана на следующих концептуальных положениях: 1) личностный подход, педагогика успеха, педагогика сотрудничества; 2) обучать математике = обучать решению задач; 3) обучать решению задач = обучать умениям типизации + умение решать типовые задачи; 4) индивидуализация обучения «трудных» и «одаренных»; 5) органическая связь индивидуальной и коллективной деятельности; 6) управление общением старших и младших школьников; 7) сочетание урочной и внеурочной работы.

Технология на основе системы эффективных уроков (А. Окунев).

Парковая технология обучения математике (А. Гольдин).

Технология мастерских построения знаний по математике (А. Окунев).

Применяются на уроках математики и различные личностно-ориентированные технологии обучения: технология дифференцированного обучения, технология модульного обучения, технология коллективного способа обучения, технология интегрированного урока.

Рассмотрим, для примера, более подробно технологию интегрированного урока. Цели интегрированных курсов - формирование целостного и гармоничного понимания и восприятия мира. Так, интересен опыт проведения интегрированного преподавания информатики и спецкурсов по математике Брейтигама Э. К. и Тевса Д. П. В статье [6] они приводят схему проведения интегрированных уроков, посвященных выполнению творческого задания по исследованию функции и построению ее графика. Авторы статьи предлагают провести 6 уроков. На совместном вводном уроке преподаватели информатики и спецкурса по алгебре и началам анализа определяют цель, план, этапы выполнения задания. Каждому ученику предлагается свое задание: устанавливаются сроки и требования к выполнению и защите творческого задания. На этом же уроке проводится первичная консультация по индивидуальным заданиям. Математическая составляющая этого урока включает разбор схемы исследования функции, работу с параметром. Составляющая по информатике включает построение алгоритма для решения задачи, схему реализации алгоритма с помощью языка программирования. Второй и третий уроки посвящены выполнению учащимися творческих индивидуальных заданий с консультациями преподавателей математики и информатики. Пятый и шестой уроки итоговые. Они строятся по схеме: индивидуальный отчет по заданию преподавателю, ведущему спецкурс по алгебре и началам анализа, после успешной защиты учащиеся отчитываются по этому же заданию преподавателю информатики. Также в статье приводятся цели работы с точки зрения математики и информатики, пример творческого задания.

4. Развитие способностей к математическому творчеству.

Развитие творческих способностей - это необходимый элемент современного урока математики. Воспитанию стремления к творчеству следует уделять пристальное внимание на всех этапах обучения. Каждый предмет школьного курса способен внести свою долю воздействия на творческий облик учащегося. Математика представляет для этого исключительные возможности.

Способности к математическому творчеству, и конечно творчеству вообще, развиваются в результате:

ь поиска решения нестандартных задач;

ь решения задач и упражнений, включающих элементы исследования;

ь решения задач на доказательство;

ь решения задач и упражнений в отыскании ошибок;

ь решения занимательных задач;

ь в отыскании различных вариантов решения одной задачи и выбора лучшего из них;

ь при решении задач, в которых применяются сведения из всех математических дисциплин (комбинированных задач);

ь при решении синтетических задач.

Важно и то, что от степени творческой активности учащихся зависит эффективность учебной деятельности по развитию мышления.

Подробнее о развитии способностей к математическому творчеству можно найти в статье Канина Е.С. «Некоторые вопросы психологии обучения решению математических задач» ([24]).

Итак, основные идеи современного урока, требования к современному уроку на уроке математики в опыте работы учителей находят свое отражение.

§2. Реализация требований к современному уроку в личном опыте преподавания математики.

2.1 Подготовка к проведению эксперимента.

Мною была проведена опытно-экспериментальная работа, целью которой было: выяснить повышает ли качество математического обучения соблюдение современных требований к современному уроку.

Эксперимент проводился в школе № 27 г. Кирова, в 10 “б” физико-математическом классе. Обучение в данном классе велось по учебнику Алимова М. А. «Алгебра и начала анализа 10-11».

Для достижения цели опытно-экспериментальной работы было проведено диагностирование обученности учащихся класса. Диагностирование обученности - это контроль и оценка знаний и умений обучаемых.

Приведем методику определения уровня обученности по П.И. Третьякову [74].

Обученность - это уровень реально усвоенных знаний, умений и навыков.

Существует пять уровней обученности.

Первый уровень обученности - различение. Он характеризуется тем, что ученик может отличить объект, процесс по наиболее существенным признакам от их аналогов.

Второй уровень обученности - запоминание. При этой степени обученности ученик может пересказать содержание текста, правила, положения, теоретические утверждения, но это не является доказательством его понимания, т. е. это только воспроизведение.

Третий уровень обученности - понимание. Ученик может находить существенные признаки и связи предметов и явлений, вычленять их из несущественных на основе анализа и синтеза; применять правила логического умозаключения, устанавливать сходства и различия.

Четвертый уровень обученности - умений и навыков.

Это наиболее высокий уровень обученности. Умения - закрепленные на практике способы применения знаний. Навык - умение, доведенное до автоматизма. Этот уровень обученности характеризуется умением применять на практике полученные теоретические знания, решать задачи с использованием усвоенных законов и правил.

Пятый уровень обученности - перенос знаний, умений и навыков в новую ситуацию. Обладающие этой степенью обученности умеют обобщать, применять полученные знания в новой ситуации.

Для определения обученности обычно используют самостоятельные работы, составленные в соответствии с уровнями обученности. Приведем ключевые слова для заданий самостоятельной работы по определению уровня обученности:

I уровень - различение: сравни, выбери, сопоставь, найди лишнее…

II уровень - воспроизведение: воспроизведи, нарисуй, напиши, перескажи товарищу…

III уровень - понимание: отчего, почему, зачем, в связи с чем, установи причинно-следственные связи, что может быть общего, выдели единичное, обобщи…

IV уровень - умений и навыков: выполни по образцу, по правилу, по формуле, перескажи, сопоставляя что-то с чем-то, какая закономерность, какие свойства…

V уровень - перенос: сочини, придумай, спроектируй, смоделируй, докажи, разыграй, выведи…

Диагностирование обученности включало в себя предварительный контроль, текущий контроль и итоговый контроль.

Предварительный контроль проводился с целью фиксации исходного уровня обученности (реально усвоенные знания, умения, навыки) и осуществлялся с помощью специально организованной самостоятельной работы по определению уровня обученности.

Текущий контроль необходим для диагностирования хода дидактического процесса, выявления динамики последнего; осуществлялся с помощью отслеживания итогов самостоятельных работ.

Итоговый контроль проводился с целью фиксации конечного уровня обученности и осуществлялся с помощью специально организованной самостоятельной работы по определению уровня обученности.

Сравнение исходного уровня обученности с конечным уровнем обученности позволяет судить об эффективности дидактического процесса и в итоге о повышении или понижении качества математического образования.

На момент проведения эксперимента класс изучил тему «Показательная функция, ее свойства и график». На эту тему и была организована самостоятельная работа диагностического характера, для определения исходного уровня обученности.

Предварительный контроль. Самостоятельная работа на тему «Показательная функция, ее свойства и график» (см. Приложение № 1).

Результаты предварительного контроля (см. Приложение № 2).

2.2. О проведенных современных уроках.

Далее, было запланировано 4 урока алгебры и начал анализа, на которых были осуществлены попытки реализации требований к современному уроку на практике:

1 урок. Показательные уравнения. Технология: проблемное обучение.

2 урок. Показательные уравнения. Технология: групповое обучение.

3 урок. Показательные неравенства. Технология: модульное обучение.

4 урок. Показательные неравенства. Технология: модульное обучение.

Сейчас о каждом уроке более подробно.

1 УРОК

Первый урок проводился по технологии проблемного обучения. Немного об этой технологии.

Проблемное обучение - это обучение, при котором преподаватель, систематически создавая проблемные ситуации и организуя деятельность учащихся по решению учебных проблем, обеспечивает оптимальное сочетание их самостоятельной поисковой деятельности с усвоением готовых выводов науки.

Проблемное обучение направлено на формирование познавательной самостоятельности учащихся, развитие их логического, рационального, критического и творческого мышления и познавательных способностей.

Проблемная ситуация - это состояние умственного затруднения, вызванного в определенной учебной ситуации объективной недостаточностью ранее усвоенных учащимися знаний и способов умственной или практической деятельности для решения возникшей познавательной задачи.

В процессе обучения математике существуют разные возможности создания проблемных ситуаций ([60],[75]).

Можно выделить практические этапы деятельности учащихся при использовании технологии проблемного обучения. На первом этапе происходит осознание проблемы, учащиеся вскрывают противоречие, заложенное в вопросе. Это противоречие может быть разрешено с помощью гипотезы. Формулирование гипотезы составляет второй этап. Третий этап решения проблемы доказательство гипотезы. Заканчивается решение проблемы общим выводом, в котором изучаемые причинно-следственные связи углубляются и раскрываются новые стороны познаваемого объекта или явления - четвертый этап решения проблемы [38].

Урок по теме «Показательные уравнения» (см. Приложение № 3).

Приведем замечание по проведенному уроку. В практической реализации урока при общих выводах по решенной проблеме желательно было бы провести с учащимися некоторую (хотя еще не совсем полную) классификацию показательных уравнений и способов их решения. Один из вариантов классификации показательных уравнений можно найти в [5] (там же много и практических заданий). Приведем классификацию показательных уравнений применительно к проведенному уроку.

Классификация показательных уравнений.

I тип. Простейшие показательные уравнения.

II тип. Показательные уравнения, приводящиеся к виду:

где - некоторые функции зависящие от (одна из них может быть константой).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.