Рефераты. Управление банковскими ресурсами на основе теории нечетких множеств

p align="left">Определение 3.7.

Декартово произведение нечетких множеств в , , определяется как нечеткое множество А в декартовом произведении с функцией принадлежности вида

.

Определение 3.8.

Выпуклой комбинацией нечетких множеств в Х называется нечеткое множество А с функцией принадлежности вида

где .

Определение 3.9.

Операции концентрирования (CON) и растяжения (DIL) нечеткого множества А определяются следующим образом:

где .

Применение операции концентрирования к заданному нечеткому множеству означает уменьшение "нечеткости" этого множества. В реальной задаче это может означать поступление новой информации, позволяющей более точно описать данной нечеткое множество. Операция растяжения может применяться для моделирования ситуации, связанной с потерей информации.

Множества уровня и декомпозиция нечеткого множества.

Множеством уровня б нечеткого множества А в Х называется множество в обычном смысле, составленное из элементов , степени принадлежности которых нечеткому множеству А не меньше числа б. Если - множество уровня б нечеткого множества А, то

.

Пусть - множества уровня б объединения и пересечения нечетких множеств А и В, тогда справедливы связи

Если - множество уровня б декартова произведения нечетких множеств , то

,

т.е. множество уровня б декартова произведения представляет собой декартово произведение множеств уровня б рассматриваемых нечетких множеств. [3]

Множество уровня б любой выпуклой комбинации нечетких множеств содержит пересечение множеств уровня б всех этих множеств, т.е.

.

Удобно пользоваться разложением нечеткого множества по его множествам уровня:

,

где , а объединение нечетких множеств берется в соответствии с определением по всем б от 0 до 1. [3]

Пусть , а функция принадлежности нечеткого множества А в Х задана таблицей

х

0

1

2

3

4

5

6

0

0,1

0,3

0,5

0,7

0,9

1

Тогда для А можно выписать следующие множества уровня:

и представить нечеткое множество А в виде

3.2 Нечеткие отношения

Нечеткое отношение представляет собой важное математическое понятие, позволяющее формулировать и анализировать математические модели реальных задач принятий решений. Отношение на множестве альтернатив, объектов и т.п. в таких задачах выявляется обычно путем консультаций с лицом, принимающим решения (л.п.р.), или с экспертами, которые зачастую не имеют вполне четкого суждения об этом отношении. В подобных случаях нечеткое отношение может служить удобной и более адекватной реальности формой представления исходной информации, чем обычное отношение. [3]

Свойства обычных отношений и операции над ними.

Отношением R на множестве Х называется подмножество декартова произведения . В соответствии с этим определением задать отношение на множестве Х означает указать все пары элементов, такие, что связаны отношением R. Для обозначения того, что элементы x и y связаны отношением R, мы будем пользоваться двумя эквивалентными записями: или . [3]

Простым примером отношения может служить отношение "не меньше" на интервале [0,1]. На рис. 3.6. это отношение (т.е. все пары , связанные отношением) представлено заштрихованной областью. Отношению "равно" в этом примере соответствует показанная на рис. диагональ единичного квадрата. [4]

Рис. 3.6. Отношение "не меньше" на интервале [0,1]

Если множество X, на котором задано отношение R, конечно, то это отношение удобно описывать матрицей , представляющей собой характеристическую функцию множества . Элементы этой матрицы определяются следующим образом:

Отношение В включает в себя отношение А, если для соответствующих множеств выполнено .

Если А - отношение на множестве Х, то обратным к А отношением называется отношение А-1 на Х такое, что тогда и только тогда, когда . Если - матрицы этих отношений (в случае конечного множества Х), то элементы этих матриц связаны соотношением , т.е. матрица А-1 получается путем транспонирования матрицы А.

Дополнением отношения R на множестве Х называется множество, являющееся дополнением множества R в декартовом произведении . Матрица дополнения отношения R получается из матрицы отношения R путем замены нулевых элементов единичными, а единичных - нулевыми.

Произведение (композиция) отношений А и В на множестве Х определяется следующим образом: тогда и только тогда, когда найдется элемент , для которого выполнены отношения . Элементы матриц отношений , А и В связаны соотношением

,

т.е. матрица отношения С равна максиминному произведению матриц отношений А и В (в максимином произведении матриц вместо арифметических операций сложения и умножения используются операции max и min соответственно).

Отношение R на множестве X называется рефлексивным, если для любого . В матрице рефлексивного отношения все элементы главной диагонали равны единице. Примером рефлексивного отношения может служить отношение R ( ? ) на множестве чисел.

Отношение R на Х называется антирефлексивным, если из того, что , следует . Все элементы главной диагонали матрицы такого отношения равны нулю.

Отношение R на Х называется симметричным, если из того, что , следует . Матрица симметричного отношения - симметричная, т.е. .

Отношение R на Х называется антисимметричным, если из того, что и , следует . Матрица такого отношения обладает следующим свойством: если , то .

Отношение R на Х называется транзитивным, если из того, что и , следует . Транзитивность отношения R эквивалентна условию или .

Транзитивным замыканием отношения R на Х называется отношение, полученное из R следующим образом:

Транзитивное замыкание можно неформально определить как "наименьшее" транзитивное отношение на Х, включающее в себя отношение R. Для любого отношения R его транзитивное замыкание равно пересечению всех транзитивных отношений, содержащих R. R - транзитивное отношение тогда и только тогда, когда оно совпадает со своим транзитивным замыканием, т.е. когда . [3]

Определение нечеткого отношения.

Определение 3.10.

Нечетким отношением R на множестве Х называется нечеткое подмножество декартова произведения , характеризующееся функцией принадлежности . Значение этой функции понимается как субъективная мера или степень выполнения отношения .

Обычное отношение можно рассматривать как частный случай нечеткого, функция принадлежности которого принимает лишь значения 0 или 1.

Приведем пример, иллюстрирующий принципиальное различие обычных и нечетких отношений. Для этого лучше всего рассмотреть два "похожих" отношения на одном и том же интервале [0, 1], причем одно из этих отношений обычное (четкое), а другое нечеткое. В качестве обычного отношения возьмем отношение R ( ? ), а в качестве нечеткого отношения возьмем отношение (>>) ("много больше"). [3]

На приведенном рис. 3.7, а пары (x,y) из интервала [0, 1], связанные отношением R (т.е. x, y - такие, что ), образуют множество, показанное штриховкой. Диагональ единичного квадрата является границей этого множества: все пары (x, y), находящиеся за этой диагональю (вне штрихованной области), не связаны данным отношением.

В случае же отношения ситуация сложнее из-за того, что понятие "много больше" является нечетким. Пытаясь построить соответствующее отношению подмножество единичного квадрата, мы обнаружим, что в этом квадрате есть пары (x, y), которые мы определенно относим к подмножеству (т. е. считаем пары (x, y) связанными отношением ), и пары, которые мы считаем определенно не входящими в это подмножество (т. е. считаем не связанными отношением R). Так, например, можно считать, что определено много больше , т.е. .

С другой стороны, ясно, что для можно столь же определенно записать .

Однако подобной определенности нет в отношении, скажем, пары с парой ,

то можно сказать, что отношение (>>) в большей степени приложимо к паре , чем к паре . [3]

Таким образом, существует некоторая промежуточная область перехода от пар, для которых отношение (>>) определенно выполняется, к парам, для которых это отношение определенно не выполняется, причем парам (х, у) из этой области можно приписать степени выполнения данного отношения или субъективные оценки, зависящие от смысла, вкладываемого в понятие "много больше" в контексте той или иной ситуации.

Рис. 3.7. Пары (x,y) из интервала [0, 1], связанные отношением R

На рис. 3.7, б отсутствие четкой границы множества R показано изменением плотности штриховки. [3]

Если множество X, на котором задано нечеткое отношение R, конечно, то функция принадлежности этого отношения представляет собой квадратную матрицу. По смыслу эта матрицы аналогична матрице обычного отношения, но элементами ее могут быть не только числа 0 или 1, но и произвольные числа из интервала [0, 1]. Если элемент этой матрицы равен , то это означает, что степень выполнения отношения равна .

Носителем нечеткого отношения R на множестве Х называется подмножество декартова произведения вида

.

Носитель нечеткого отношения можно понимать как обычное отношение на множестве X, связывающее все пары (х, у), для которых степень выполнения данного нечеткого отношения не равна нулю. В случае конечного множества X матрицу носителя можно получить, заменив в матрице исходного нечеткого отношения единицами все ненулевые элементы. [3]

При анализе задач принятия решений с нечеткими отношениями удобно пользоваться множествами уровня нечеткого отношения. Поскольку нечеткое отношение определяется как нечеткое множество, то и его множества уровня определяются как

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.