Рефераты. Концепции современного естествознания

p align="left">А вот согласно второму началу термодинамики, в изолированной системе все процессы протекают только в одном направлении - к максимальной энтропии, возрастанию хаоса, что сопровождается рассеянием энергии. Проблема, которая потребовала своего решения, выглядела так: как можно вывести необратимость термодинамики из обратимости механики?

Эту проблему пытался решить во второй половине XIX века Л. Больцман. Он обратил внимание на то, что термодинамическая необратимость имеет смысл только для большого числа частиц: если частиц мало, то система оказывается фактически обратимой. Для того чтобы согласовать микроскопическую обратимость с макроскопической необратимостью, Больцман использовал вероятностное описание системы. Однако вскоре было показано, что уже само по себе вероятностное описание в неявном виде содержит представление о существовании "стрелы времени", и поэтому доказательство Больцмана нельзя считать корректным решением проблемы.

Сам Больцман пришел к выводу, что вся бесконечная Вселенная в целом обратима, а наш мир представляет собой по космическим меркам микроскопическую флуктуацию. А в середине XX века пулковский астроном Н.А. Козырев попытался создать необратимую механику, в которой "стрела времени" имеет характер физической реальности и служит источником энергии звезд. Но точка зрения Больцмана допускает возможность нарушения причинности в отдельных достаточно обширных областях Вселенной, а точка зрения Козырева вводит в описание природы некую особую физическую сущность, подобную «жизненной силе».

4. Основные понятия, законы и принципы классической физики

Классическая физика понимается как фундаментальная база исследования макрообъектов. Для иллюстрации этого положения рассмотрим следующий пример. Как движется автомобиль? Поступательное движение поршней в цилиндрах преобразуется во вращательное движение колес. Колеса отталкиваются от поверхности дороги, и в результате автомобиль перемещается в пространстве по отношению к окружающим предметам. Все эти процессы изучает «Механика». Началом «цепочки» механических движений является движение поршня, который толкает газообразная смесь в камере сгорания. Процессы в газах изучает «Молекулярная физика». Часть энергии рабочей смеси преобразуется в энергию поршня, а часть «выбрасывается» в виде теплоты вместе с отработанными газами, расходуется на последующее сжатие рабочей смеси и т.д. Эти энергетические процессы, от которых зависят КПД и мощность двигателя, изучает «Термодинамика». Электромагнитные процессы в системе зажигания изучает «Электродинамика». Поскольку эти процессы формируются с помощью транзисторов микросхем и других устройств, которые основаны на квантовых явлениях, то они изучаются «Квантовой физикой».

Таким образом, движение автомобиля представляет собой сумму самых разных явлений. Различные специальные дисциплины изучают отдельные явления, агрегаты и узлы автомобиля. Это связано с их сложностью и привело к дифференциации науки. Однако самое первое описание движения автомобиля связано с основными законами классической физики.

Самый простой вид движения материи в макромире - это перемещение тел по отношению к другим телам. Для его описания используются основные понятия кинематики: движение, скорость, ускорение, относительность движения, система отсчета, материальная точка, траектория и т.п. и основные законы, объясняющие механическое движение, - законы Ньютона:

Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока оно не понуждается приложенными силами изменить это состояние. (Закон инерции).

Изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует (второй закон - главный закон динамики).

Действие всегда есть равное и противоположно направленное противодействие, т.е. взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны (третий закон).

Согласно законам механики - основной причиной движения является действие сил. Поэтому анализу понятия силы в классической физике уделяется большое внимание. Силы делятся на: силу упругости (она связана с деформацией тел) и силу трения. Природа этих сил связана с электрическим взаимодействием между атомами; силу тяготения (ее называют силой тяжести, под ее действием свободные тела падают на Землю). Сила тяготения часто проявляется в виде веса - силы, с которой тело действует на опору; силу инерции.

Существуют разные формы движения материи (механическая, тепловая, электрическая и т.д.), которые могут переходить друг в друга. Поэтому физика использует важнейшее понятие, выражающее меру перехода одних форм движения в другие, - это энергия. Важнейшие законы классической физики - законы сохранения:

Закон сохранения энергии: энергия не уничтожается и не создается, а может лишь переходить из одной формы в другую.

Закон сохранения импульса: если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.

В современной физике эти важнейшие законы сохраняют свое фундаментальное значение, они выполняются всегда и везде, не только в макромире, но и в космосе и в микромире.

Несмотря на то, что классическая термодинамика была составной частью классической физики, однонаправленность тепловых процессов принципиально отличала их от механических. Любое механическое движение обратимо, т.е. может происходить как в прямом, так и в обратном направлении через те же промежуточные состояния: вращение маховика, качание маятника и т.п. При этом в уравнениях движения меняется лишь знак времени: вместо

t следует использовать -t. Это означает, что механическое движение симметрично по отношению к изменению знака времени. Тепловые процессы в этом смысле существенно отличаются: они необратимы, не симметричны по отношению к изменению знака времени. Время всегда течет в одну сторону, так называемая «стрела времени».

Все реальные процессы протекают с увеличением энтропии, т.е. ведут к установлению теплового равновесия. Из этого следует, что всякая упорядоченность в окружающем мире постепенно исчезает, плотности частиц и температуры выравниваются, энергия рассеивается, со временем прекращается вообще всякое направленное движение, всякая жизнь, останется только молекулярный хаос. Долгое время умы не только физиков, но и философов занимала идея тепловой смерти Вселенной.

Сосуществовавшие концепции описания природы - корпускулярная и континуальная - взаимоисключали друг друга, так как считалось, что они относятся к разным сферам реальности. Поэтому обнаружение двойственной природы у одних и тех же объектов означало для классической физики потрясение всех ее основ и получило название «кризиса физики».

Основные понятия темы:

Корпускулярная концепция природы описывает все явления и процессы природы как движение частиц.

Континуальная концепция природы описывает все явления и процессы как

Вещество - вид материи, обладающий корпускулярными свойствами.

Поле - вид материи, который представляет собой взаимодействие частиц и описывается длиной волны, фазой и амплитудой.

Динамические закономерности отображают объективную закономерность в форме однозначной связи физических величин, выражаемых количественно.

Статистические закономерности отображают объективную закономерность в форме результата взаимодействия большого числа элементов и поэтому характеризуют их поведение в целом.

Закрытые (замкнутые) системы - системы, которые не обмениваются со своим окружением ни массой, ни энергией.

Энтропия - мера беспорядка в системе.

I-е начало термодинамики - закон сохранения энергии.

II-е начало термодинамики - энтропия замкнутой системы постоянно возрастает.

«Тепловая смерть Вселенной» - направленность всех процессов во Вселенной к точке термодинамического равновесия.

Тема 7. Открытые системы и неклассическая термодинамика

1. Закрытые и открытые системы. Энтропия, порядок и хаос

По характеру взаимодействия с окружающей средой различают системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Впервые представление о закрытых системах возникло в классической термодинамике и представляло собой определенную абстракцию, т.к. подавляющее большинство, если не все системы, являются открытыми.

Для описания энергетических процессов в закрытых системах использовалось понятие энтропии (в переводе с греч. - поворот, превращение) и обозначало меру необратимого рассеяния энергии. Л. Больцман, интерпретировавший это понятие с точки зрения изменения порядка в системе, связал понятия: энтропия, порядок, хаос.

Понятие энтропии оказалось связано с процессами эволюции в системе. Однако эволюция, понятие которой утвердилось в биологии, была связана с усложнением организации, в то время как эволюция в термодинамике связывалась с дезорганизацией систем. Это противоречие оставалась неразрешимым вплоть до 60-х гг. XX века, пока не появилась неравновесная термодинамика.

Процессы, протекающие в различных явлениях природы, стали разделять на два класса. К первому относятся процессы, протекающие в замкнутых системах. Они развиваются в направлении возрастания энтропии и приводят к установлению равновесного состояния в системе. Ко второму классу относятся процессы, протекающие в открытых системах. В открытых системах также производится энтропия, поскольку в ней происходят необратимые процессы, но энтропия в этих системах не накапливается, как в закрытых, а выводится в окружающую среду. Поскольку энтропия характеризует меру беспорядка в системе, постольку можно сказать, что открытые системы живут за счет заимствования порядка из внешней среды. В соответствующие моменты - моменты неустойчивости - в них могут возникать малые флуктуации (отклонения от равновесия), способные разрастаться в макроструктуры. В неравновесных термодинамических системах возможны состояния, приводящие не к возрастанию энтропии и стремлению термодинамических систем к равновесному хаосу, а к «самопроизвольному» возникновению упорядоченных структур, к рождению порядка из хаоса. В этом случае хаос выступает в роли активного начала процесса самоорганизации. Самоорганизация - это процесс самопроизвольного формирования структуры более сложной, чем первоначальная. Структуры, образующиеся в процессе самоорганизации, называются диссипативными структурами.

Таким образом, формируется новое представление о хаосе, которое перестает нести негативный смысл. В традиционном понимании хаос - это беспорядок, дезорганизация. В новом понимании хаос - более высокая форма, где случайность и бессистемные импульсы становятся организующим принципом.

Главным направлением физической науки XX века считалась физика элементарных частиц, которая исследовала структуру материи при наиболее высоких энергиях, малых масштабах и коротких отрезках времени и породила современные теории о природе физических взаимодействий и происхождении Вселенной. Однако она так и не смогла ответить на некоторые фундаментальные вопросы: как зародилась жизнь, что такое турбулентность, как во Вселенной, подчиняющейся закону повышения энтропии и неумолимо движущейся к все большему беспорядку, может возникнуть порядок?

Стивен Хокинг, декан физического факультета Кембриджского университета, лауреат Нобелевской премии, космолог, в 1980 г. выступил с обзорной лекцией, посвященной развитию теоретической физики и названной «Не наступает ли конец физической теории?». Он выразил мнение многих ученых о том, что понимание законов природы в терминах хорошо освоенной физики элементарных частиц оставило без ответа вопрос о том, как применить эти законы к любым системам, кроме простейших. Только возникновение науки о хаосе позволило окончательно освободить физику из пут ньютоновского видения мира. Завершилась революция в физике: теория относительности разделалась с иллюзиями Ньютона об абсолютности пространства-времени, квантовая механика развенчала мечту о детерминизме физических событий, и, наконец, теория хаоса развенчала фантазию Лапласа о полной предопределенности развития систем.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.