Рефераты. Концепции современного естествознания

p align="left">Существуют два вида катализа - гомогенный и гетерогенный. При гомогенном катализе реагенты, продукты и катализатор составляют одну фазу (газовую или жидкую). В этом случае отсутствует поверхность раздела между катализатором и реагентами.

Особенность гетерогенного катализа состоит в том, что катализаторы (обычно твердые вещества) находятся в ином фазовом состоянии, чем реагенты и индукторы реакции. Реакция развивается на поверхности твердого тела, которая всегда имеет много дефектов, в том числе свободные электронные пары, не участвующие в образовании связи. Молекулы реагентов легко взаимодействуют с этими электронами и благодаря образующимся связям легко удерживаются на поверхности катализатора. В результате некоторые связи внутри адсорбированных молекул настолько ослабевают, что молекулы либо разрушаются, либо превращаются в активные радикалы. Каталитическая активность твердого вещества тем выше, чем лучше реагенты адсорбируются на его поверхности, и чем слабее продукты реакции удерживают его. При этом важно, чтобы, изменяя энергетическое состояние молекул реагента, катализатор сам не образовывал с ними прочных химических связей.

Согласно современным воззрениям, каталитическая активность твердого тела обусловлена не всей поверхностью, а лишь отдельными ее частями, называемыми ее активными центрами. Их природа пока точно не установлена. Как правило, химики стремятся получать твердый катализатор с максимально большой поверхностью. Однако площадь сама по себе еще не определяет эффективность катализатора. Более важно - состояние поверхности, т.е. число активных центров на единицу поверхности.

В 1960 году были открыты случаи самосовершенствования катализаторов в ходе реакции, тогда как обычно катализаторы в ходе их работы дезактивизировались, ухудшались и выбрасывались. В 1964 году отечественный химик А.П. Руденко выдвинул теорию химической эволюции, напрямую связанную с процессами самосовершенствования катализаторов.

Для современной картины мира, пронизанной идеей развития, идея эволюции может показаться достаточно тривиальной. Однако в познании неживой природы проследить генетическую цепочку становления, возникновения, функционирования и гибели отдельных форм и образований на фоне «глобального эволюционизма» - задача не простая. Для химиков эволюция не исчерпывается возникновением и распадом межатомных, молекулярных структур. Химический процесс приводит к постепенному усложнению вещественной структуры космоса, к обогащению энергетических связей. В то же время он, как верно подметил Гегель, отягощен разрывами, подчас длительными остановками развития.

Появление идеи химической эволюции было подготовлено большими успехами в области изучения механизма химических превращений, развитием химической кинетики. В 1951 году Б.П. Белоусов открыл гомогенную периодическую химическую реакцию - окисление лимонной кислоты броматом при катализаторе ионами церия в сернокислой среде. Вопреки вековому опыту химиков, количество вещества, вступающего в реакцию, не убывало, не оставалось равновесным, а колебалось. Явно неживая химическая смесь проявила как бы способность к самоорганизации. До сих пор химики утверждали: никаких колебательных процессов в однородных растворах быть не может. Однако в последние годы накоплено достаточно фактов, свидетельствующих о множестве колебательных явлений типа реакции Белоусова. Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет появления новых и удаления использованных химических реагентов. Однако в отличие от самоорганизации других открытых систем в указанных химических реакциях, важное значение приобретают каталитические процессы. Роль этих процессов усиливается по мере усложнения состава и структуры химических систем. Химическая эволюция если не целиком, то в значительной мере связана с процессами самоорганизации каталитических систем.

Таким образом, химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. Орудием отбора наиболее прогрессивных эволюционных изменений является базисная реакция.

В настоящее время химические процессы исследуются такими отраслями как химия плазмы, реакционная химия, химия высоких давлений и температур. Анализ химических процессов выходит на фундаментальный теоретический уровень. В результате развития квантовой химии многие проблемы механизма реакции решаются на основании теоретических расчетов.

5. Проблемы самоорганизации в современной химии

Понятие самоорганизации имеет в эволюционной химии большое значение. Сложились два подхода к решению проблем самоорганизации предбиологических систем: субстратный и функциональный. Субстратный подход позволил получить информацию об отборе химических элементов и структур, который происходил в процессе самоорганизации предбиологических систем. На Земле из органогенов наиболее распространены только кислород и водород, распространенность других очень мала. В космосе господствуют два элемента - водород и гелий. Существенную роль в отборе химических элементов, способных к образованию прочных энергоемких связей, в первую очередь, сыграл углерод, который вмещает и удерживает внутри себя самые редкие химические противоположности, а также обладающие лабильностью органогены - азот, фосфор и сера, и элементы, которые являются центрами ферментов - железо и магний.

В ходе эволюции наряду с отбором химических элементов для биосистем осуществлялся также отбор химических соединений. Из небольшого числа органических веществ природа создала огромный мир растений и животных. Химики считают, что когда период химической подготовки сменился периодом биологической эволюции, химическая эволюция остановилась. Им очень важно понять, как происходила эта химическая подготовка, чтобы научиться у природы из менее организованных материалов создавать более организованные.

Функциональный подход к проблеме предбиологической эволюции характеризуется исследованием самоорганизации материальных систем, выявлением механизмов этих процессов. Такой подход преимущественно используется физиками и математиками, они рассматривают эволюционные процессы с позиций кибернетики. Многие из них утверждают, что для функционирования механизмов самоорганизации природа систем никакой особой роли не играет: живые системы, даже интеллект, можно смоделировать и из металла.

Тот факт, что катализ сыграл решающую роль в процессе перехода от химических систем к биологическим, в настоящее время подтверждается многими данными. Наиболее убедительные результаты, как мы уже видели, связаны с опытами по самоорганизации химических систем, которые проводили Б.П. Белоусов и А.М. Жаботинский. Эти реакции сопровождаются образованием новых структур, причем важное значение в них приобретают каталитические процессы, роль которых усиливается по мере усложнения структуры химических систем.

Основные понятия темы:

Атом - система взаимодействующих элементарных частиц, состоящая из ядра и электронов.

Молекула - нейтральная по заряду наименьшая совокупность атомов, обладающая определенной структурой и способностью к самостоятельному существованию.

Валентность - количественная характеристика, показывающая число взаимодействующих между собой атомов в образовавшейся молекуле.

Катализатор - вещество, влияющее на скорость химической реакции.

Катализ - ускорение химической реакции, благодаря присутствию специального вещества.

Ингибирование - замедление химической реакции, благодаря присутствию специального вещества.

Органогены - химические элементы, участвующие в создании и жизнедеятельности организмов.

Химическая связь - это взаимодействие, связывающее отдельные атомы в молекулы, ионы, кристаллы.

Химическая кинетика - описание и объяснение химических процессов.

Тема 12. Проблемы и перспективы современной геологии

1. Основные этапы развития наук о Земле

Физические, космологические и химические концепции подвели нас вплотную к представлениям о Земле, ее происхождении, строении и разнообразных свойствах. Исследователи и путешественники, наблюдатели и философы создали единую географическую картину мира, рисующую Землю как сложную систему, состоящую из различных, но взаимосвязанных элементов: горных пород и почвы, климата и воды, флоры и фауны.

Различные науки о Земле, имея один объект исследования - Землю, развиваются вместе, взаимно обогащая друг друга. Они тесно взаимодействуют с физикой, химией, биологией, на стыках, с которыми возникают новые научные направления, решающие задачу объяснения единства вещества Земли, баланса ее энергии, глобальных процессов, объединяющих различные сферы Земли, а также отдельные участки ее поверхности.

В становлении и развитии наук о Земле выделяют три этапа:

1.Доклассический (от античности до XVII века)

2.Классический (XVIII - первая половина XX века)

3.Неклассический (60-е годы XX века по настоящее время)

В первый период были выдвинуты идеи о шарообразности Земли и климатической зональности. Древние греки и римляне знали о поднятии и опускании суши, землетрясениях, вулканах и вулканической деятельности; о том, что полезные ископаемые зарождаются и находятся в недрах Земли. Они имели представление о многих горных породах и минералах, парагенезе, геологическом строении некоторых участков земной коры, об осадконакоплении и осадкообразовании, могли оценить последствия деятельности человека в «геологическом отношении».

Во второй период разрабатываются концепции активности Земли: нептунизм, плутонизм, катастрофизм, униформизм, актуализм, мобилизм и т.д. Согласно концепции нептунизма (А.Г. Вернер), все горные породы отложились в виде осадков из Всемирного океана. Плутонизм видел динамический исток всех явлений во внутреннем тепле Земли, вызывающем землетрясения и извержения вулканов. В этих концепциях активность Земли связывается с одной из геооболочек. Униформизм настаивал на том, что геологические явления в прошлом были такими же, как и в настоящее время. Сторонники актуализма считали, что, используя сравнительно-исторический метод, можно судить о прошлых геологических процессах.

В третий, неклассический, период фактуальный потенциал настолько возрос, что оказалась возможной концепция глобальной эволюции Земли. Согласно этой концепции, несколько миллиардов лет назад вокруг Солнца обращалось гигантское холодное газопылевое облако. Частицы, составлявшие первоначальную туманность, сталкивались друг с другом и образовывали холодные твердые сгустки, впоследствии ставшие планетами. Разогревание их произошло позже благодаря сжатию и поступлению солнечной энергии.

Теории эволюции Земли, то есть полного и непротиворечивого описания развития ядра и мантии Земли, океанической и континентальной коры, атмосферы, гидросферы и биосферы пока не существует. Имеется несколько направлений и школ, возглавляемых ведущими специалистами в области геофизики, геохимии и геологии. Сложность возникающих проблем, неоднозначность трактовки уже добытых фактов пока не позволяют соединить в единой картине данные, полученные при различных подходах.

2. История геологического развития Земли

Ученые разделяют историю Земли на длительные промежутки времени - эоны. Эоны - на эры, эры - на периоды, периоды - на эпохи, эпохи - на века. Разделение на эры и периоды не случайно. Окончание одной эры и начало другой знаменовалось существенными преобразованиями лика Земли, изменением соотношения суши и моря, интенсивными горообразовательными процессами.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.