Рефераты. Исследование возможности реализации обучающей, развивающей и воспитывающей функциий естественнонаучного образования при изучении темы "Белки. Нуклеиновые кислоты"

p align="left">- Сегодня я на уроке закрепил и углубил знания по …

-Сегодня я на уроке узнал …

- После сегодняшнего урока я буду относиться …

3.1.2 Лекция по теме «Белки. Нуклеиновые кислоты»

План лекции

1. Белки.

1.1. Понятие о белках.

1.2. Состав белков. Пептидная связь.

1.3. Свойства белков. Разнообразие белков и их роли в живых организмах.

1.4. Ферменты-биокатализаторы. Механизм действия ферментов.

2. Нуклеиновые кислоты.

2.1. Дезоксирибонуклеиновая и рибонуклеиновая кислоты, их состав, свойства и функции.

2.2. Принцип комплементарности.

3. Биосинтез белка.

1. Среди биологически важных полимеров видное место занимают белки и нуклеиновые кислоты, входящие в состав живой клетки и играющие особую роль при возникновении и развитии живых организмов.

В состав белков входят 20 протеиногенных аминокислот, которые кодиpyютcя генетичеcким кодом и постоянно oбнapyживaютcя в белкax.

Главными структурными единицами белков и пептидов являются остатки аминокислот, связанные карбоксамидной пептидной связью между б-карбоксильной и б-аминогруппой.

- NH - C=O

Каждый белок характеризуется специфичной аминокислотной последовательностью.

При выяснении структуры белков необходимо установить не только число и природу остатков, но также и порядок их чередования в макромолекуле. Для решения этой задачи производят последовательное отщепление аминокислот с того или другого конца полимерной молекулы с последующей идентификацией их. В методе Эдмана, например, белок обрабатывают раствором фенилизотиоцианата в пиридине и полученный продукт присоединения -- раствором НС1 в нитрометане. При этом концевой остаток отщепляется в виде соответствующего фенилтиогидантоина без изменения остальной части макромолекулы:

Фенилтиогидантоин

Щелочной гидролиз фенилтиогидантоина приводит к образованию свободной аминокислоты, которая идентифицируется методами бумажной хроматографии:

Теоретически, повторяя этот процесс многократно, можно отщеплять поочередно все остатки первоначальной белковой молекулы, установив тем самым их взаимное расположение в макромолекуле. Практически, однако, ввиду сложности задачи она была полностью решена только для некоторых белков несложного строения, как, например, инсулин. При этом выяснилось, что в размещении остатков аминокислот по цепи макромолекулы у биологически активных белков отсутствует та регулярность, которая нередко встречается у других полимеров. В то же время у каждого вида белка наблюдается строго определенная последовательность аминокислотных звеньев.

В белковой молекуле некоторые группы, не участвующие в образовании пептидной связи, остаются свободными или используются для создания мостиков между линейными цепями. Благодаря наличию свободных ионогенных кислых или основных групп белки являются полиамфолитами.

Непосредственное образование пептидной связи из групп СООН и аминогруппы, как показывает термодинамический расчет, должно протекать с увеличением свободной энергии системы. Следовательно, синтез белка из аминокислот может произойти только в том случае, если он сопровождается другими процессами, протекающими с уменьшением свободной энергии. В клетках живых организмов такими процессами являются окисление и гликолиз (биохимический распад молекулы глюкозы на 2 молекулы пировиноградной кислоты); энергия, освобождающаяся при этом, в значительной степени концентрируется в виде пирофосфатных связей молекул аденозилтрифосфорной кислоты (АТФ):

АТФ в реакциях схематически изображается так:

Аналогичные обозначения применяются для соответствующих монофосфорной (АМФ) и дифосфорной кислот (АДФ):

Использование энергии пирофосфатных связей в простейшем случае можно представить как результат образования промежуточного смешанного ангидрида аминокислоты (АК) и АМФ, который более реакционноспособен, чем сама аминокислота:

Ads - ОРО(ОН) - ОРО(ОН) - ОРО(ОН)2 + НООС - CHR - NH2

АТФ АК

Ads - OPO(OH)OOC - CHR - NH2 + H2P2О7

смешанный ангидрид АМФ-АК

Характерной особенностью биологически активных белков является легкость, с которой они изменяются под влиянием тепла, ферментов кислот и различных органических соединений. При этом происходит денатурация белка с полной утратой его биологической активности. Денатурация меняет специфическую пространственную конформацию макромолекулы, но не сопровождается гидролизом ковалентных связей. В живых организмах эта конформация возникает в результате взаимодействия боковых ответвлений полипептидных цепей, являясь термодинамически неравновесной; во время денатурации белок переходит в равновесную денатурированную форму. При достаточно сильном воздействии ферментов, тепла и различных химических агентов может произойти расщепление макромолекулы на отдельные аминокислоты вследствие гидролиза по пептидным связям.

Молекулярный вес различных белков -- от десятка тысяч до нескольких миллионов. В состав живых организмов входит несколько видов белков. При использовании белков в качестве пищи организм перерабатывает их в другие, характерные для него белки. Благодаря наличию реакционноспособных групп в макромолекуле белок часто находится в клетках не в свободном состоянии, а в виде протеидов, т. е. комплексов с другими низкомолекулярными или высокомолекулярными веществами. К таким протеидам относятся нуклеопротеиды, хромопротеиды и др.

По химическому составу белки делятся на простые, состоящие только из аминокислотных остатков, и сложные. Сложные белки могут включать ионы металла (металлопротеины, или металлопротеиды), пигмент (хромопротеины, или хромопротеиды), нуклеиновыми кислотами (нуклепротеины), а также ковалентно связывать остаток фосфорной кислоты (фосфопротеины), углевода (гликопротеины) или НК (геномы некоторых вирусов). Состав аминокислот, образующих белки, выражается общей формулой:

,

в которых радикал может содержать различные функциональные группы (R= - SH, OH,- COOH, -NH2) и кольца. -Аминокислоты в белках ковалентно соединены между собой пептидными связями:

Белковая молекула может состоять из одной или нескольких полипептидных цепей, содержащих от 2-3 десятков до нескольких сотен аминокислотных остатков каждая.

Образование пептидных связей происходит в результате взаимодействия карбоксила одной аминокислоты с аминогруппой другой. При этом из 2 -аминокислот образуются пептиды с выделением одной молекулы воды:

Из трех аминокислот образуются трипептиды, из большого числа аминокислот - полипептиды.

Функции, выполняемые белками, распределяются примерно следующим образом.

Структурообразующие функции. Структурные белки отвечают за поддержание формы и стабильности клеток и тканей. В качестве примера структурного белка - коллаген. К структурным белкам можно отнести также гистоны, функцией которых является организация укладки ДНК в хроматине. Структурные единицы хроматина, нуклеосомы, состоят из октамерного комплекса гистонов, на который навита молекула ДНК (DNA).

Транспортные функции. Наиболее известным транспортным белком является гемоглобин эритроцитов (слева внизу), ответственный за перенос кислорода и диоксида углерода между легкими и тканями. В плазме крови содержатся множество других белков, выполняющих транспортные функции. Так, преальбумин переносит гормоны щитовидной железы -- тироксин и трииодтиронин. Ионные каналы и другие интегральные мембранные белки осуществляют транспорт ионов и метаболитов через биомембраны.

Защитные функции. Иммунная система защищает организм от возбудителей болезней и чужеродных веществ. Например, иммуноглобулин G, который на эритроцитах образует комплекс с мембранными гликолипидами.

Регуляторные функции. В биохимических сигнальных цепях белки осуществляют функции сигнальных веществ (гормонов) и гормональных рецепторов. В качестве примера здесь представлен комплекс гормона роста соматотропина с соответствующим рецептором. При этом экстрацеллюлярные домены двух молекул рецептора связывают одну молекулу гормона. Связывание с рецептором активирует цитоплазматические домены комплекса и тем самым обеспечивает дальнейшую передачу сигнала. В регуляции обмена веществ и процессов дифференцировки принимают решающее участие ДНК-ассоцированиые белки (факторы транскрипции). Особенно детально изучено строение и функции белков-активаторов катаболизма и других бактериальных факторов транскрипции.

Катализ. Среди 2000 известных белков наиболее многочисленную группу составляют ферменты. Самые низкомолекулярные из них имеют мол. массу 10-15 кДа. Белки среднего размера, как, например, приведенная на схеме алкогольдегидрогеназа, имеют мол.массу 100-200 кДа. Молекулярная масса высокомолекулярных ферментов, к которым относится глутаминсинтетаза, построенная из 12 мономеров, могут достигать 500 кДа.

Двигательные функции. Взаимодействие актина с миозином ответственно за мышечное сокращение и другие формы биологической подвижности. Гексамер миозина длиной 150 нм -- один из наиболее крупных белков. Нитевидный актин (F-актин) образуется путем полимеризации относительно небольших молекул глобулярного актина (G-актин). Процессом сокращения управляют ассоциированный с F-актином тропомиозин и другие регуляторные белки.

Запасные функции. В растениях содержатся запасные белки, являющиеся ценными пищевыми веществами. В организмах животных мышечные белки служат резервными питательными веществами, которые мобилизуются при крайней необходимости.

В настоящее время различают первичную, вторичную и третичную структуры белковой молекулы.

Первичная структура белка - его химическая структура, т.е. последовательность чередования аминокислотных остатков в полипептидной цепи данного белка.

Вторичная структура белка - форма полипептидной цепи в пространстве. Установлено, что полипептидные цепи природных белков находятся в скрученном состоянии - в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали. Подобная вторичная структура получила название -спирали. Водородные связи в ней направлены параллельно длинной оси спирали (-спирали чередуются с аморфными частями). Такое представление является общепризнанным. Вытянутые полипептидные цепи имеет лишь небольшое число белков, например, белок натурального шелка - фиброин, вязкая сиропообразная жидкость, затвердевающая на воздухе в прочную нерастворимую нить.

Третичная структура белка - реальная трехмерная конфигурация, которая принимает в пространстве закрученная спираль полипептидной цепи. В простейших случаях третичную структуру можно представить как спираль, которая в свою очередь свернута спиралью. У такой структуры в пространстве имеются выступы и впадины с обращенными наружу функциональными группами. Третичной структурой объясняется специфичность белковой молекулы, ее биологическая активность. Определяющими факторами образования и удержания третичной структуры белков являются связи между боковыми радикалами аминокислотных остатков (дисульфидные мостики атомов серы, солевые мостики из аминогруппы и карбоксила, водородные мостики)

Физические и химические свойства белков

Строением белков объясняются их весьма разнообразные свойства. Они имеют разную растворимость: некоторые растворяются в воде, другие - в разбавленных растворах нейтральных солей, а некоторые совсем не обладают свойством растворимости (например, белки покровных тканей). При растворении белков в воде образуется своеобразная молекулярно-дисперсная система (раствор высокомолекулярного вещества). Некоторые белки могут быть выделены в виде кристаллов (белок гемоглобина крови).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.