Рефераты. Методика изучения элементов математического моделирования в курсе математики 5-6 классов

p align="left">Задача 1. Два автомобиля выехали одновременно из пункта А в пункт В, расстояние между которыми 540 км. Первый автомобиль ехал со скоростью, на 10 км/ч большей, чем второй, и прибыл в пункт В на 45 мин раньше второго. Найдите скорость каждого автомобиля (см. № 218, [1]).

I этап. Формализация. Построим математическую модель задачи.

Обозначим за x км/ч - скорость второго автомобиля, тогда скорость первого автомобиля равна (x+10) км/ч.

ч - время, потраченное на весь путь вторым автомобилем.

ч - время, потраченное на весь путь первым автомобилем.

Известно, что второй автомобиль потратил на путь на 45 мин больше, чем первый. .

. Полученное уравнение является математической моделью данной задачи.

II этап. Внутримодельное решение.

Перенесем все слагаемые в одну часть .

Приведем слагаемые к общему знаменателю .

Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю. Получим следующую систему: .

Получили, что и .

III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи.

Так скорость автомобиля не может быть отрицательным числом, то условию задачи соответствует только один корень , т.е. скорость второго автомобиля равна 80 км/ч, а скорость первого 90 км/ч.

Задача 2. Группа студентов решила купить магнитофон ценой от 170 до 195 долларов. В последний момент двое отказались участвовать в покупке, поэтому каждому из оставшихся пришлось внести на 1 доллар больше. Сколько стоил магнитофон?

Решение.

I этап. Формализация. Построим математическую модель задачи. Пусть х -  число студентов в группе, у долларов - величина первоначально предлагаемого взноса. Тогда стоимость магнитофона . После того, как двое отказались участвовать в покупке, студентов стало , а взнос составил доллар. Следовательно стоимость магнитофона равна . Условие задачи можно представить в виде системы

Математическая модель построена.

II этап. Внутримодельное решение. Рассмотрим систему, состоящую из уравнения и неравенства

В уравнении раскроем скобки и приведем подобные. Получим следующую систему

Из уравнения выразим y, . Следовательно, . Так как х - натуральное число, то сейчас систему неравенств можно решать в натуральных числах. Из неравенства имеем х. Из неравенства имеем х. Таким образом, нужно найти натуральные решения неравенств . Ясно, что х = 20. Тогда у = 9 и = 180.

III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи. Магнитофон стоил 180 долларов.

Задача 3. Окно имеет форму прямоугольника, завершенного сверху полукругом. Укажите такие размеры окна, чтобы при данном периметре l оно пропускало больше света (см. № 156, [18]).

Решение.

I этап. Формализация. Построим математическую модель данной задачи.

Требуется найти размеры окна с наибольшей площадью. Обозначим размеры: r - радиус полукруга, h - высота прямоугольника, тогда основание прямоугольника 2r.

Чтобы определить, какое из переменных выбрать аргументом исследуемой функции, надо посмотреть, какое из них проще выражается через другое:

l=2r+2h+r, h=, r=.

Удобней выбрать r, так как для выражения площади понадобится r2, а h входит в это выражение линейно.

S(r)= . Эта функция и есть модель данной задачи.

II этап. Внутримодельное решение.

Ясно, что 0<r<.

Найдем производную функции S(r): .

Воспользуемся необходимым условием экстремума: l-r(+4)=0. Отсюда r=. Из соображений здравого смысла окно не может иметь наименьшую площадь, поэтому найденное значение r - точка максимума. При этом r=h=.

III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи. Чтобы при данном периметре l окно пропускало больше света, необходимо установить следующие размеры окна: r=h=

Учителю следует добиться от учащихся четкого понимания значения и содержания каждого из выше описанных этапов процесса математического моделирования. Это нужно для того, чтобы школьники усвоили, что они решают не просто математическую задачу, а конкретную жизненную ситуацию математическими методами. Тогда учащиеся смогут увидеть в математике практическое значение, и не будут воспринимать ее как абстрактную науку.

Метод математического моделирования является мощным инструментом для исследования различных процессов и систем. Приложения этого метода к решению конкретных задач изложены в ряде известных монографий и учебных пособий. Вместе с тем, многие из них предполагают достаточно высокий уровень математической подготовки учеников, что зачастую вызывает определенные трудности при изучении материала. Понятие математической модели и некоторые общие положения, связанные с ним, должны в той или иной форме иллюстрироваться на протяжении всего курса математики, а разделы школьной программы, посвященные задачам на работу, движение, проценты, прогрессии и, наконец, задачам на применение производных и интегралов, могут рассматриваться как введение в метод математического моделирования [24].

1.4. Функции и цели обучения математическому моделированию в школе

Терешин Н. А. [28] выделяет следующие дидактические функции ма-тематического моделирования:

1. Познавательная функция.

Методической целью этой функции является формирование познавательного образа изучаемого объек-та. Это формирование происходит постоянно при переходе от просто-го к сложному.

Здесь мысль учащегося направляется по кратчайшим и наиболее доступным путям к целостному восприятию объекта. Реализация познавательной функции не предопределяет процесса научного познания, ценность этой функции состоит в ознакомлении учащихся с наиболее кратчайшим и доступным способом осмысле-ния изучаемого материала.

2. Функция управления деятельностью учащихся.

Математичес-кое моделирование предметно и потому облегчает ориентировоч-ные, контрольные и коммуникационные действия. Ориентировочным действием может служить, например, построение чертежа, соответ-ствующего рассматриваемому условию, а также внесение в него до-полнительных элементов.

Контролирующие действия направлены на обнаружение ошибок при сравнении выполненного учащимися чертежа (схемы, графика) с помещенными в учебнике или на выяснение тех свойств, кото-рые должны сохранить объект при тех или иных преобразова-ниях.

Коммуникационные действия отвечают той стадии реализации функции управления деятельностью учащихся, которая соответству-ет исследованию полученных ими результатов. Выполняя эти дей-ствия, учащийся в свете собственного опыта объясняет другим или хотя бы самому себе по построенной модели суть изучаемого явле-ния или факта.

3. Интерпретационная функция.

Известно, что один и тот же объект можно выразить с помощью различных моделей. Например, окружность можно задать с помощью пары объектов (центр и ра-диус), уравнением относительно осей координат, а также с помощью рисунка или чертежа. В одних случаях можно воспользоваться ее аналитическим выражением, в других - геометрической моделью. Рассмотрение каждой из этих моделей является ее интерпретацией; чем значимей объект, тем желательней дать больше его интерпрета-ций, раскрывающих познавательный образ с разных сторон.

Можно также говорить об эстетических функциях моделирова-ния, а также о таких, как функция обеспечения целенаправленно-го внимания учащихся, запоминания и повторения учащимися учебного материала и т. д.

Кроме этих функций можно выделить еще одну - не менее важную - эвристическую. Математическая модель, выступая как выражение количеством качества объекта, позволяет экспериментировать с его количественной стороной, дает возможность определить границы устойчивости, нормальный и оптимальный режимы функционирования, еще глубже проникнуть в качественный аспект объекта -- показать его внутренние закономерности. В этом и раскрывается эвристическая функция математического моделирования и его возможности для решения проблем разных наук: биологии, химии, физики, медицины и других [30].

Применение нескольких функций математической модели спо-собствует наиболее плодотворному мышлению учащегося, так как его внимание легко и своевременно переключается с модели на полу-ченную с ее помощью информацию об объекте и обратно. Такое переключение сводит к минимуму отвлечение умственных усилий учащихся от предмета их деятельности.

1.5. Роль изучения элементов математического моделирования в курсе математики 5-6 классов

В литературных источниках отмечается использование моделирования в обучении математике как средства познания и осмысления нового знания, выделяются его виды, отмечаются условия, необходимые для его форми-рования (Л. М. Фридман, В. В. Давыдов, С. И. Архангельский, О. Б. Епишева, В. И. Крупич, Л. С. Катаева, Г. А. Балл и др.). Вместе с тем остается недостаточной разработанность вопросов обучения приему моделирования, наиболее эффективной реализации всех его потенциальных возможностей.

Некоторые авторы считают, что в условиях развивающего обучения формирование у учащихся приемов интеллектуальной деятельности является одной из центральных задач (А. К. Артемов, В. В. Давыдов, И. С. Якиманская и другие), ее существенным приемом является моделирование.

Модели упрощают восприятие учащимися какой-либо ситуации и обес-печивают целостность восприятия, развивают компоненты абстрактного мышления (анализ, сравнение, обобщение, абстрагирование и др.), совершенствуют логическое мышление и помогают глубже усвоить учебный материал, так как позволяют изучать свойства объекта в «чистом» виде [26].

Необходимость овладения математическим моделированием как особым действием диктуется психолого-педагогическими соображениями. Изучение процесса обучения привело к разработке психологической теории учения. Теория поэтапного формирования умственных действий, разработанная советским психологом П. Я. Гальпериным и его сотрудниками, исходит из положения, что процесс обучения - это процесс овладения системой умственных действий. При этом овладение умственным действием происходит в процессе интериоризации (перехода вовнутрь) соответствующего внешнего практического действия.

Когда ученика знакомят с каким-либо действием, ко-торым ему нужно овладеть, то согласно данной теории знакомство надо начинать с выполнения этого действия соответствующими материальными предметами. Для того чтобы лучше увидеть общие черты усваиваемого действия, надо отвлечься от ненужных в данном случае свойств пред-метов. Это значит, что нужно перейти от действия с материальными предметами к действию с их заместителями -- моделями, свободными от всех других свойств, кроме нужных в данном случае, то есть перейти на этап материализованного действия. Это может быть какая-то графическая схема, образная или знаковая модель, на которой или с помощью которой ученик выполняет ус-ваиваемое действие [31].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.