Можно сделать вывод, что одной из важных задач курса обучения детей математике является овладение детьми моделированием. Овладение школьниками общеучебным (универсальным) умением моделировать предполагает поэтапное овладение ими конкретными предметными умениями: представлять задачу в виде таблицы, схемы, числового выражения, формулы (уравнения), чертежа и уметь осуществлять переход от одной модели к другой. Учебный предмет, развертывающийся как система понятий, требует логики движения в его познании от всеобщих свойств к конкретным, выделение и исследование оснований, определяющих данную систему, что невозможно без языка моделирования. Моделирование в обучении должно быть усвоено учащимися и как способ познания, которым они должны овладеть, и как важнейшее учебное действие, являющееся составным элементом учебной деятельности. С этой целью обучение элементам математического моделирования начинается еще в средней школе. Изучение моделирования в этот период, большей своей частью, связано с решением сюжетных задач. Моделирование - это метод и средство познания, а сюжетные задачи - это один из «полигонов», где отрабатывается моделирование. Умение решать задачи выступает как один из критериев сформированности умения моделировать, а также служит мотивационной составляющей процесса обучения [8]. Сюжетные задачи есть первый класс задач, на которых раскрывается идея моделирования реальных процессов.
Но следует отметить, что представление школьников о моделировании и моделях весьма неясное и ограниченное. Учащиеся не знают, что имеют дело с моделями, изучают модели, так как и в программах, и в учебниках понятия модели и модели-рования почти отсутствуют. Потом уча-щиеся с удивлением узнают, что они все время изучают модели, что привычные им понятия уравнения, чис-ла, фигуры, равномерного движения, массы и другие являются научными моделями, что, решая задачи, они моделируют [31]. Поэтому необходимо явно включить моделирование в содержание учебных предметов, знакомить учащихся с современной трактовкой понятий моделирования и модели, использовать моделирование как метод научного познания и решения задач. Наиболее благоприятным для начала изучения математического моделирования является 5 - 6 класс, так как именно в этот период у школьников происходят определенные психические изменения. В зависимости от того, как школьники будут относиться к учебной деятельности, как они научатся самостоятельно овладевать знаниями, такими и будут их дальнейшие успехи в обучении. Вопросы, изучаемые в курсе математики 5 - 6 классов, составляют фундамент, на котором строится дальнейшее обучение как математике, так и другим предметам. От уровня знаний и умений, сформированных в 5 - 6 классах, зависит успешное овладение всем курсом математики. В процессе изучения математического моделирования в это время учащиеся знакомятся с теоретическими фактами, идет формирование основных математических понятий, показ применения математических фактов на практике. Поэтому на этом этапе у школьников складывается определенное отношение к решению задач, а значит и к математике в целом.
Обучение с применением моделирования повышает активность мыслительной деятельности учащихся, помогает понять задачу, самостоятельно найти рациональный путь решения, установить нужный способ проверки, определить условия, при которых задача имеет или не имеет решение [32].
Моделирование можно рассматривать как особую деятельность по построению (выбору или конструиро-ванию) моделей, и как вся-кая деятельность она имеет внешнее практическое содержание и внутреннюю психическую сущность. Следо-вательно, моделирование как психическая деятельность может включаться в качестве компонента в такие пси-хические процессы, как восприятие, представление, па-мять, воображение и, конечно, мышление. В свою оче-редь, все эти психические процессы включаются в дея-тельность моделирования как сложную деятельность [31].
Модели и связанные с ними представления являются продуктами сложной познавательной деятельности, включающей прежде всего мыслительную переработку исходного чувственного материала, его «очищение» от случайных моментов. Модели выступают как продукты и как средство осуществления этой деятельности.
Таким образом, включение моделирования в учебный процесс рационализирует его и одновременно активизирует познавательную деятельность учащихся. Следо-вательно, решается не только конкретная учебная задача, но и осущест-вляется развитие учащихся. Широкое использование моделирования - одно из методических средств развивающего обучения математике. Моделирование отражает преимущественно теоретический стиль мышления, который в боль-шей мере содействует развитию учащихся, приобщает их к научному стилю мышления.
И. Г. Обойщикова предлагает осуществлять обучение учащихся приему моделирования поэтапно: в начальных классах - неявно, лишь упоминая, что, заменяя данные задачи значками (или графической схемой), мы используем модели, на этом этапе следует обучать учащихся действиям, входящим в «ядро» моделиро-вания (умение сопоставлять объекты, умение противопоставлять объекты, умение сравнивать объекты путем сопоставления или противопоставления, умение абстрагироваться, умение обобщать объекты); в 5 классе - явно и осознанно, раскрывая его сущность, изучая операции, входящие в «оболочку» моделирования (умение строить модель, умение проводить преобразования модели и умение ее конкретизировать); в 6 классе - самостоятельно используя прием в несложных случаях.
Проблема моделирования в начальной школе рассматривается А. К. Артемовым, Л. П. Стойловой, М А. Бородулько, Е. В. Конновой, М. Н. Сизовой, Т. Н. Харлановой и другими, но в 5 - 6 классах лишь некоторые авторы используют моделирование при решении сюжетных задач. Специальная методика формирования приема моделирования для названной ступени обучения пока еше слабо разработана. Однако вопросы моделирования приобретают все большее значение в обучении [26].
В учебниках новых поколений понятие математической модели и математического моделирования появляется уже на самых ранних этапах обучения. Так, например, в учебнике для 5 класса Г. В. Дорофеева, Л. Г. Петерсон уже во 2 параграфе первой части предлагается для изучения тема «Математические модели» [11].
В силу различных причин реально в школе эти учебники используются редко, поэтому идеи математического моделирования большинству учащихся незнакомы. Роль изучения элементов математического моделирования в 5 - 6 классах - пропедевтическая.
В этот период происходит первичное знакомство учащихся с понятиями «модель» и «моделирование», а также с отдельными действиями, характерными для метода математического моделирования. Вопросы, изучаемые в курсе математики 5 - 6 классов, составляют фундамент, на котором строится дальнейшее обучение как математике, так и другим предметам.
В связи с выше изложенным рассмотрим особенности изучения темы «Математические модели» по учебникам «Математика» для 5 - 6 классов авторов Г. В. Дорофеева, Л. Г. Петерсон и дадим краткий обзор учебников [6], [7], [11 - 17], [21], [22] с точки зрения наличия элементов математического моделирования.
В свою очередь под моделированием понимается процесс построения, изучения и применения моделей.
Из всего многообразия моделей большинство специалистов выделяют два класса моделей:
1) материальные (реально существующие, по-строенные из каких-либо вещественных предметов: из ме-талла, дерева, стекла и других материалов);
2) идеальные (воображаемые, основанные на мысленном представлении).
2. Математическое моделирование, как частный случай моделирования, предполагает использование в качестве средства исследования оригинала его математическую модель, с помощью которой появляется возможность сформулировать задачу его изучения как математическую и воспользоваться для анализа универсальным математическим аппаратом.
3. Использование моделирования в обучении имеет два аспекта. Во-первых, моделирование служит тем содержанием, которое должно быть усвоено учащимися в результате обучения, теми методами познания, которыми они должны овладеть, и, во-вторых, моделирование является учебным действием и средством, без которого невозможно полноценное обучение. Метод моделирования используется в любой науке, обладает огромной эвристической силой: позволяет свести изучение сложного к простому, невидимого -- к видимому, то есть сделать любой сложный объект доступным для тщательного всестороннего изучения.
4. Представления школьников о математическом моделировании весьма ограничены, хотя математическое моделирование играет важную роль в развитии диалектико-материалистического мировоззрения и является мощным методом научного познания. Включение в школьный курс математики уже на ранних этапах обучения понятий «модель» и «моделирование», формирование простейших умений математического моделирования играет важную роль в развитии личности в целом. Обучение моделированию учащихся приводит к повышению эффективности обучения и общеразвивающему эффекту.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11