Рефераты. Психолого-педагогічні особливості засвоєння математичної термінології молодшими школярами

а наступному уроці вчитель моделює числа від 31-40. Аналогічно, як у межах 21-29, називають числа 31-39, тобто за допомогою двох слів: перше слово - число, що позначає три десятки, а друге слово - це число одиниць.

Вчитель повинен звернути увагу дітей на назву числа, що позначає чотири десятки, оскільки ця назва не підлягає попередньому принципу утворення назв. Він має пояснити дітям, що термін “сорок” прийшов до нас з Аляски, де цим терміном позначають мішок з чотирма десятками соболиних шкірок. Щодо чисел від 41 до 89, то вони утворюються за принципом, що кожне число, яке складається з десятків і одиниць, називають двома словами, а кожне число, що складається тільки з десятків, називають одним словом. До дітей потрібно донести, що числа 50, 60, 70, 80 утворюються за таким принципом: назва числа, що позначає десятки, являє собою один термін (слово), яке складається з двох частин, перша з яких вказує на кількість десятків, а друга - скорочена назва слова десятків -десят. Для засвоєння назв цих чисел для дітей доцільно у класі вивісити таблицю (додаток 2).

При розгляданні чисел концентру “Сотня” дітям потрібно розтлумачити терміни “круглі числа” і “некруглі числа”. Круглі числа - це числа, при записі яких на першому місці справа завжди стоїть нуль: 20, 30, 40, 50, 60, 70, 80, 90. Некруглими двоцифровими числами називаються числа, обидві цифри яких відмінні від нуля.

Наступний концентр, який розглядається в третьому класі чотирирічної школи - це концентр “Тисяча”. Усну нумерацію в межах тисячі починають вивчати з формування у дітей поняття про сотню як про нову лічильну одиницю. Для цього лічать які-небудь предмети по одному, десятками, сотнями. Для цього можна використати наочний посібник “Квадрати і смужки”, а також палички і пучки паличок. Одиниці позначають квадратами, десятки - смужками, по десять квадратів у кожній, а сотні - квадратами, по десять смужок у кожному. Під керівництвом вчителя діти встановлюють співвідношення: 10 одиниць становить 1 десяток, 10 десятків становлять 1 сотню. Назви чисел від 101 до 120 утворюються з допомогою двох слів: перше слово - сотня, тобто сто, друге слово вказує на кількість одиниць. Оскільки числа 11-19 називають одним словом, що складається з трьох частин (три - на - дцять), то числа від 111 до 119 називаються двома словами, наприклад, сто тринадцять. Число 120 складається також з двох слів, але перше число означає сотню - сто, а друге число позначає десятки. Назви чисел від 121 до 199 утворюються з назв чисел, що позначають сотні, десятки, одиниці, якщо відсутні одиниці, то число називається двома словами, а на місці одиниць в запису ставлять нуль. Після цього дітей ознайомлює вчитель з числом 200. Для цього моделюють число 199 та додають 1 і знаходять наступне число:

.

Методом аналогії вчитель навчає дітей лічити сотнями так само, як одиницями чи десятками. Це здійснюється методом прилічування по одному. Доцільно для дітей у класі вивісити таблицю назв круглих чисел в межах тисячі, за допомогою якої засвоюються знання усної нумерації (додаток 3).

Назви круглих сотень утворюються з назв чисел першого десятка та назви лічильної одиниці - сотня, причому, якщо кількість сотень дорівнює 2, 3 та 4, то назва числа позначається одним терміном, що складається з двох частин, де перша частина вказує на кількість сотень, а друга - деформована назва сотні - у вигляді -сті, -ста; якщо кількість сотень дорівнює 5, 6, 7, 8, 9, то принцип утворення назви числа такий: число називається одним терміном, який складається з двох частин, де перша частина вказує на кількість сотень, а друга - на скорочену назву сотні -сот.

Після цього моделюються числа, які вміщують розрядні числа кожного з трьох розрядів. Вчитель дітям наголошує, що число 1 є одиницею першого розряду, число 10 є одиницею другого розряду, число 100 є одиницею третього розряду. Якщо модель числа вміщує одиниці кожного з трьох розрядів, то число записують трьома значущими цифрами: 236, де 6 є одиницею першого розряду, 30 є одиницею другого розряду і 200 є одиницею третього розряду. Так вводиться термін “розряд”.

Щодо концентру “Багатоцифрові числа”, який вивчається в четвертому класі, то його починають розглядати після усвідомлення дітьми поняття “тисячі”. Діти повторюють утворення розрядних одиниць внаслідок групування попередніх, дрібніших одиниць: 10 одиниць дорівнює 1 десятку, 10 десятків дорівнює 1 сотні, 10 сотень дорівнює 1 тисячі.

Після цього вчитель наголошує, що достатньо вміти добре читати трицифрові числа і перед назвою цього числа поставити слово тисяча.

При вивченні даного концентру “Багатоцифрові числа” вчитель формує у дітей поняття “клас” і пояснює, що тисячі можна лічити як прості одиниці та групувати їх у десятки і сотні.

Використовуючи рахівницю, лічать одиниці тисяч (відкладаючи їх на четвертій дротині знизу, оскільки на третій дротині - сотні, на другій - десятки, на першій - одиниці) до 10 тисяч, які замінюють одним десятком тисяч (відкладають на п'ятій дротині знизу), потім лічать десятки тисяч і, діставши 10 десятків тисяч, замінюють їх 1 сотнею тисяч (відкладають на шостій дротині знизу); нарешті, лічать сотні тисяч до 10 і замінюють 10 сотень тисяч 1 мільйоном (відкладаючи на сьомій дротині знизу). Після цього працюють з нумераційною таблицею, в якій позначено назви всіх розрядних одиниць від одиниць до сотень тисяч. Учитель дає пояснення про те, що одиниці, десятки і сотні утворюють числа І класу, або клас одиниць, а одиниці тисяч, десятки тисяч, сотні тисяч утворюються числа ІІ класу, або клас тисяч. Потім корисно порівняти І та ІІ класи і встановити схожість та відмінність їх: у кожному класі по три розряди; одиниця кожного розряду в 10 разів більша за попередню, але в І класі лічать і групують одиниці, а в ІІ класі - тисячі.

На наступному етапі роботи учні ознайомлюються з нумерацією 7-9-цифрових чисел. Вивчення нумерації цих чисел будують за таким самим планом, як і над 4-6-цифровими числами.

б) арифметичних дій над натуральними числами

Над натуральними числами виконують такі арифметичні дії, як додавання, віднімання, множення та ділення.

Уміння правильно знаходити результати додавання і віднімання в межах десяти є необхідною умовою успішного вивчення усних і письмових прийомів виконання цих дій у наступних концентрах. Треба прагнути, щоб учні засвоїли таблиці додавання та віднімання. Це є основною вимогою вивчення арифметичних дій у першому класі.

Навчання учнів першого класу чотирирічної початкової школи додаванню і відніманню проводиться не одночасно. Дія додавання вводиться перед вивченням чисел другої п'ятірки та служить для запису і утворення чисел 6-10 з попереднього і одиниці та складу числа з двох менших. З дією віднімання учнів ознайомлюють після вивчення числа 10. Деякий розрив у часі розгляду дій додавання і віднімання полегшує засвоєння відповідних термінів і знаків.

Виконуючи неодноразово дії з множинами, учні усвідомлюють, що операції об'єднання відповідає дія додавання. Вчитель повідомляє, що в математиці для позначення дії додавання використовується знак “+”, викладає за допомогою розрізних цифр і знаків “+” і “=” приклад на утворення наступного числа за попереднім і одиницею та подає його зразок читання, наприклад, “до числа 3 додати 1, дорівнює 4”.

Засобами для вивчення дії додавання є набірне полотно та лічильний матеріал (додаток 4).

Під кінець вивчення нумерації чисел першого десятка відводиться урок на узагальнення дії додавання, ознайомлення з термінами “доданки”, “сума”, “плюс”.

Однією з вправ на цьому уроці може бути така вправа. У кожного учня є конверт з трьома білими кружечками, а на парті лежать два червоні кружечки. За вказівкою вчителя учні вкладають у конверт два червоні кружечки. Вчитель повідомляє, що білі і червоні кружечки об'єднали. Кружечків у конверті стало більше. Як позначити виконання дії на письмі? (Учитель записує на дошці потрібний приклад ). Прочитайте приклад. Яку дію ми виконали практично? (Об'єднали кружечки). Яка дія виражена в прикладі? (Додавання). Після цього вчитель повідомляє дітям, що числа 3 і 2 - це доданки, а число 5 - сума. Знак дії додавання, - продовжує вчитель пояснювати, - можна називати по-іншому: плюс. За допомогою набірного полотна вчитель демонструє дітям вище сказане (додаток 5).

На основі практичних дій з предметами і розгляду різних малюнків розкривається конкретний зміст дії віднімання.

Виконуючи неодноразово дії з множинами, учні усвідомлюють, що операції вилучення з деякої множини предметів певної підмножини предметів відповідає дія віднімання. Вчитель пояснює дітям, що в математиці для позначення дії віднімання використовується знак “-” і викладає за допомогою лічильного матеріалу, розрізних цифр і знаків “+” і “=”, а також набірного полотна приклад на віднімання (додаток 6).

В концентрі “Другий десяток” передбачено ознайомити дітей із назвами компонентів дії віднімання “зменшуване” та “від'ємник” і результатом дії віднімання “різниця”.

Бесіда з учнями щодо усвідомлення цих термінів може бути такого вигляду. У кожного учня на парті є 10 паличок: 7 червоних і 3 білих. Скільки червоних паличок? (7 червоних паличок). Скільки білих паличок? (3 білих паличок). Заберіть білі палички. Які палички залишилися? (Червоні). Скільки паличок залишилося? (7 паличок). Більше чи менше паличок залишилося? (Більше). Після цього, вчитель повідомляє дітям, що число 10 - це зменшуване, число 3 - це від'ємник, в число 7 - це різниця чисел 10 і 3.

За допомогою набірного полотна вчитель демонструє вище сказане (додаток 7).

Щодо дії множення, то другокласників ознайомлюють з цією дією спираючись на дію додавання однакових доданків. Пропонуються завдання на визначення чисельності об'єднання кількох рівнопотужних множин однорідних предметів. А саме: знайти загальну кількість вишень на п'яти гілках, якщо на кожній з них по дві вишні.

2 + 2 + 2 + 2 + 2 = 10

Після цього вчителем вводиться означення дії множення. Множенням називається додавання однакових доданків. Суму однакових доданків можна скорочено записати так: . Крапку, що стоїть між двома числами, називають знаком множення, але при читанні не називають її спеціальним терміном, як при додаванні чи відніманні. Після цього вчитель розкриває зміст компонентів дії множення. Він пояснює, що число, яке стоїть на першому місці, показує значення доданка, а число, яке стоїть на другому місці, вказує на кількість однакових доданків.

На наступному уроці учнів ознайомлюють із назвами компонентів дії множення. Вчитель говорить дітям, що число, яке береться доданком, називається першим множником, а число, яке показує кількість доданків, називається другим множником; а сума однакових доданків називається добутком. А також, добутком називається і вираз, що вміщує дію множення.

Доцільно, на тривалий час у класі вивісити таблицю з назвами компонентів дії множення та результату дії множення (додаток 8).

З дією ділення учнів знайомлять після засвоєння дії множення шляхом розгляду текстових простих задач.

Вчитель зачитує таку задачу:

Було 6 груш, їх розклали на 3 тарілки порівну. Скільки груш на кожній тарілці?

За допомогою наочного матеріалу вчитель відлічує по 1 груші і кладе їх на три тарілки по черзі. Повідомляє дітям, що таке ділення називається діленням на рівні частини і записує це так:

(гр.)

Пояснюючи дітям після цього, що знак “:” - це знак ділення, який не має окремої назви і при читанні дії ділення його не називають.

На наступних уроках розкривається інший зміст дії ділення - ділення на вміщення. Цей зміст дії ділення розкривається методом порівняльного аналізу та розглядом двох задач з однаковими числовими даними, які розв'язуються однаковою дією.

Вчитель записує скорочений запис двох задач.

12 з. - 3 уч.12 з. - ? ? - 1 уч. 3 з. - 1 уч.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.