Рефераты. Диалектика развития понятия функции в школьном курсе математики

p align="left">а) Если дана сумма функций, то строится график одной из них, более простой (например, линейной функции); затем к ней пристраивается график второй функции, ординаты которых откладываются от соответствующих точек первого графика.

б) Если задана разность функций, то строится (штриховой линией) график уменьшаемой функции и от нее откладываются ординаты вычитаемой функции, взятые с обратным знаком. Иногда удобно вычертить (штриховой линией) график вычитаемой функции с обратным знаком и ординаты обеих кривых (уменьшаемой функции и вычитаемой с обратным знаком) сложить.

в) Сумма или разность двух функций преобразовывается в одну функцию, если это возможно и если вычерчивание графика такой функции проще.

г) Построение графика алгебраической суммы функций упрощается, если использовать свойства четности, нечетности, периодичности и т.д.

Ниже приводятся примеры, иллюстрирующие как общий прием, так и упомянутые упрощающие приемы построения графиков суммы и разности двух функций.

1. у=х-sinx (рис. 31).

Рис. 31.

Имеем две функции: y1=x и у2=-sinx.

Строим график первой функции, затем от него (а не от оси х-ов) откладываем ординаты второй функции. Для облегчения построения параллельно прямой у1 проведены две вспомогательные прямые: у=х+1 и у=x-1 На этих прямых находятся вершины синусоиды.

2. y=x+tgx (рис. 32).

Построение аналогично построению предыдущего графика.

3. y=x+lgx (рис. 33).

Строится прямая y1=x.

Характерные точки графика:

при х=1 y1=l; y=l+lgl=l; точка А(1;1);

при х=10 y1=10; y=10+lgl0=ll; точка В(10;11).

Из чертежа можно видеть, что область существования заданной функции (0; ), т. е. та же, что и для второго слагаемого у2=lgx.

4. у=х-arcsinx (рис. 34).

Заданная функция нечетная, так как

(-х)-arcsin(-х)=-х+arcsin х=-(x- arcsin x).

Поэтому построение можно выполнить только для правой части графика (при х 0).

Строим два вспомогательных графика:

y1=x и у2=arcsinx.

Ординаты искомого графика представляют собой разность: у1-у2. Характерные точки:

1) х=0, у1=0; у2=0; у=0; точка (0; 0);

рис. 33

2) х=1 (граничная точка), у1=1, y2=arcsin1=, у=-1-0,57; точка (1;-0,57);

3) х=0,5, у1=0,5, у2=arcsin0,5=0,52;
у=-0,02; точка (0,5;-0,02).

Левая часть графика построена косо симметрично правой.

Из рисунка видно, что область существования заданной функции та же, что для

Рис. 34 второго слагаемого, т. е. для функции y2=arcsinх - сегмент [-1; 1].

5. y=arcctgx-x (рис. 35).

Строим вспомогательные графики:

у1=arcctgх и у2=-х.

Ординаты обоих графиков складываются. Замечаем, что прямая у2=-х является асимптотой заданной кривой. Вторая асимптота

Рис. 35

имеет уравнение: у3=-х. Характерная точка: при х=0 y=arcctg0=; точка (0; ). Далее, =+?=?.

6. y=sin(arcsinx)-х (рис. 36).


Рис. 36. Рис. 37.

Область существования [-1; 1] заданной функции совпадает с областью существования функции y1=sin(arcsinx). В этой области y1=sin(arcsinx)=x, также и у2=х.

Следовательно, у=у1-у2=0

Рис. 38.

График функции - отрезок оси х-ов в пределах [-1; +1].

7. y=х-ctg(arcctgх) (рис. 37).

Рис. 39.

Область существования заданной функции -- вся числовая ось х-ов (-?; ?).

у1=х;

y2=ctg(arcctgх)=х;

у=у12=х+х=2х.

График функции -- прямая, проходящая через начало координат под углом к оси х-ов, где

=arctg2.

8. y=x+arcsin(sinx) (рис. 38).

Заданная функция нечетная. Поэтому построение графика проводим только для х?0.

Строим полупрямую у1=х и от нее откладываем соответствующие значения функции у2=arcsin(sinх). Левая часть графика строится косо симметрично правой.

9. y=х+arctg(tgx) (рис. 39).

Построение этого графика аналогично построению предыдущего графика.

Рис. 40.

10. у=х-arccos(cosх) (рис. 40). Строим два вспомогательных графика:

у1=х и у2=аrссоs(соsx).

Справа от вертикальной оси ординаты графика заданной функции получаются как разность соответствующих ординат вспомогательных графиков:

y=y1-y2.

Слева от оси у-ов сделано дополнительное построение графика функции - у2= - arccos(cos x). Затем ординаты у1 и (- у2) складываются.

рис. 41.

11. у=х - arcctg (ctg x) (рис. 41).

График этой функции строится так же, как и предыдущий.

12. y=+lgx (рис. 42).

Вспомогательный график у1=. Ординаты функции y2=lgx откладываются не от оси х-ов, а от вспомогательного графика у1. Характерные точки:

1) при x=l y1==l; y2=lgl=0; у=1; точка А(1; 1);

2) при х=10 у1=; y2=lgl0=l; y=+l; точка В(10; +1);

3) =-?.

Область существования заданной функции: (0; ?), т.е. та же, что и функции y2=lgx.

Рис. 42.

13. у=- cos x (рис. 43).

Строим графики двух функций (штриховыми линиями): у1= и у2=-соsх. Второй график построен только для х?0, т.е. в пределах области существования функции у1=. График заданной функции строится в этих же пределах сложением ординат: y1+у2.

рис. 43.

14. y=arcsin(sinx)- (рис. 44).

Помимо двух вспомогательных графиков функций у1=arcsin(sinx) и у2=, построен дополнительно еще один вспомогательный график: у3=-. От точек этого дополнительного графика (у3) отложены ординаты у1.

Кроме того, отмечены точки A и В, в которых графики функций у1 и у2 пересекаются, т. е. у=у1-y2=0; эти точки снесены на ось абсцисс.

15. y=--ax при а>1 (рис. 45).

Вспомогательные графики: y1= и у2=-ах. От точек кривой у2=-ах отложены ординаты у1=.

Рис. 44.

16. у=ах при а>1 (черт. 194). Вспомогательные графики: у1х и у2.

График заданной функции строится сложением ординат вспомогательных графиков: у=у12.

Рис. 45. Рис. 46.

При x=0 заданная функция имеет минимум: ymin=a0+a-0= 1+1=2.

Найдем минимум данной функции.

Обозначим ax +a-x=k. (a)

Заметим, что:

область существования заданной функции: (-;), т. е. функция существует на всей числовой оси х-ов;

ах>0 и а-x>0 и, следовательно, k>0.

Преобразуем равенство (а):

ax+=k,

(б)

Так как ах ?0, то равенство (б) равносильно равенству: a2x+1=axk, откуда получаем:

а2x-kax+1=0. (в)

Решаем уравнение (в) относительно ах:

(г)

Видим, что ах имеет действительное значение при ?1, или k2?4, т. е. |k|?2.

А так как k>0, то |k|=k и, следовательно, k?2. Таким образом, kmin=2, т. е.

(ax +a-x)min=2.

Подставляя в равенство (г) значение kmin, находим, что

Рис. 47

т.е. х=0.

17. y=logacosх+cosx (Рис. 47), где а>1.

Так как заданная функция периодическая, с периодом 2, то построение проведено для одного периода: -.

Вспомогательные функции: y1=cosx и y2=logacosx.

Функция y1=cosx является внутренней для функции y2=logacosx, что учитывается при построении второго графика.

Граничные значения:

при х(-) и х

y1=cosx0 и y2=logacosх -?; следовательно, у-?.

Характерная точка:

при х=0 у1=соsx=1; y2=logal=0; у=1, точка (0; 1).

При функция не определена, так как cosх?, и вспомогательная функция y2=logcosx не существует.

Рис. 48.

18. y=tgх+logatgх (рис. 48), где а>1.

Строится аналогично предыдущему графику.

Построение проведено, для одного периода (): 0<х<.

При функция не существует.

19. у=х+ (рис. 49).

Функция нечетная, так как

.

Построение графика проведено для х>0.

Вспомогательные графики: у1=х и у2=.

Прямая у1=х является асимптотой искомого графика.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.