Рефераты. Диалектика развития понятия функции в школьном курсе математики

p align="left">Идея соответствия (19 век).

В 1855 году Н.И. Лобачевский (1792-1856), развивая вышеупомянутое эйлеровское определение функции в 1755г., писал: «Общее понятие требует, чтобы функцией от x называть число, которое дается для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано и аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать, или оставаться неизвестной... Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе».

Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано (1781-1848).

Таким образом, современное определение функции, свободное от упоминании об аналитическом задании, обычно приписываемое немецкому математику П.Л. Дирихле (1805-1859), неоднократно предлагалось и до него. В 1837 году Дирихле так сформулировал общее определение понятия функции: «y есть функция переменной x (на отрезке axb), если каждому значению x на этом отрезке соответствует совершенно определенное значение y, причем безразлично каким образом установлено это соответствие - аналитической формулой, графиком, таблицей либо даже просто словами».

Примером, соответствующим этому общему определению, может служить так называемая «функция Дирихле» (x):

Эта функция задана двумя формулами и словесно. Она играет известную роль в анализе. Аналитически ее можно определить лишь с помощью довольно сложной формулы, не способствующей успешному изучению ее свойств. Таким образом, примерно в середине 19 века после длительной борьбы мнений понятие функции освободилось от рамок аналитического выражения, от единовластия аналитической формулы. Главный упор в основном общем определении понятия функции делается на идею соответствия.

Во второй половине 19 века после создания теории множеств в понятие функции, помимо идеи соответствия была включена и идея множества.

Таким образом, в полном своем объеме общее определение понятия функции формулируется следующим образом: если каждому элементу x множества А поставлен в соответствие некоторый определенный элемент y из множества В, то говорят, что на множестве А задана функция y=f(x), или что множество А отображено на множество В. В первом случае элементы x множества А называют значениями аргумента, а элементы их множества В - значениями функции; во втором случае x - прообразы, y - образы. В современном смысле рассматривают функции, определенные для множества значений x, которые возможно, и не заполняют отрезка a xb, о котором говорится в определении Дирихле.

Достаточно указать, например, на функцию-факториал y=n!, заданную на множестве натуральных чисел. Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам. Например, к геометрическим фигурам.

При любом геометрическом преобразовании мы имеем дело с функцией. Другими синонимами термина «функция» в различных отделах математики являются: соответствие, отображение, оператор, функционал и др.Дальнейшее развитие математической науки в 19 веке основывалось на общем определении функции Дирихле, ставшим классическим.

Дальнейшее развитие понятия функции (20 век - ...).

Уже с самого начала 20 века определение Дирихле стало вызывать некоторые сомнения среди части математиков. Еще важнее была критика физиков, натолкнувшихся на явления, которые потребовали более широкого взгляда на физику. Необходимость дальнейшего расширения понятия функции стала особенно острой после выхода в свет в 1930 году книги «Основы квантовой механики» Поля Дирака (1902-1984), крупнейшего английского физика, одного из основателей квантовой механики. Дирак ввел так называемую дельта-функцию, которая выходила далеко за рамки классического определения функции. В связи с этим советский математик Н.М. Гюнтер (1871-1941) и другие ученые опубликовали в 30-40 годах нашего столетия работы, в которых неизвестными являются не функции точки, а «функции области», что лучше соответствует физической сущности явлений. Так, например, температуру тела в точке практически определить нельзя, в то время как температура в некоторой области тела имеет конкретный физический смысл. В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 году, 28-летний советский математик и механик С.Л. Соболев (род. в 1908г.) первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики. Важный вклад в развитие теории обобщенной функции внести ученики и последователи Шварца - И.М. Гельфант, Г.Е. Шилов и др.

§ 1.3. Различные современные подходы к определению понятия «функция».

Понятие функции часто встречается в школьном курсе математики и хорошо знакомо учащимся. Тем не менее на приемных экзаменах в вузах поступающие допускают много ошибок при использовании этого понятия. Объясняется это различными причинами, но в первую очередь тем, что слово «функция» используется в математике в нескольких смыслах, а в школьных учебниках это обстоятельство не разъяснено. Поэтому мы прежде всего обратимся к определению функции и другим относящимся сюда понятиям и подробно остановимся на тех различных пониманиях слова «функция», которые встречаются в школьном курсе математики.

Самым общим (и, безусловно, основным) является в математике следующее определение понятия функции. Говорят, что определена некоторая функция, если, во-первых, задано некоторое множество, называемое областью определения функции, во-вторых, задано некоторое множество, называемое областью значений функции, и, в-третьих, указано определенное правило, с помощью которого каждому элементу, взятому из области определения, ставится в соответствие некоторый элемент из области значений.

Приведем несколько примеров, иллюстрирующих это общее определение.

Пример 1. Обозначим через А множество всех треугольников на плоскости, а через В -- множество всех окружностей, взятых на этой же плоскости. Множество А будем считать областью определения, а множество В - областью значений (той функции, которую мы определяем). Наконец, каждому треугольнику поставим в соответствие окружность, вписанную в этот треугольник. Это есть вполне определенное правило, которое каждому элементу взятому из области определения (т. е. треугольнику), ставит в соответствие некоторый элемент из области значений (т. е. окружность).

Пример 2. Сохраним те же самые множества А и В, что и в
примере 1, т. е. по-прежнему будем считать областью определения множество всех треугольников на плоскости, а областью значений--множество всех окружностей. Далее, каждому треугольнику поставим в соответствие его описанную окружность. Мы получаем функцию с той же областью определения А и той же областью значений В. Но это уже другая функция, так как окружность сопоставляется треугольнику с помощью другого правила.

Пример 3. Обозначим через К множество всех кругов на плоскости, а через О -- множество всех действительных чисел. Далее, выберем единицу измерения площадей и каждому элементу множества К, (т. е. кругу) поставим в соответствие число, равное площади этого круга. Мы получаем функцию с областью определения К и областью значений D.

Пример 4. Обозначим через N множество всех натуральных чисел, а через О--множество всех действительных чисел. Далее, выберем два действительных числа a1 и r и каждому натуральному числу п поставим в соответствие действительное число, равное п-му члену арифметической прогрессии с первым членом а, и разностью r (т. е. натуральному числу п поставим в соответствие действительное число a1+(n-1)r ). Мы получаем функцию с областью определения N и областью значений D.

Пример 5. Теперь мы примем и в качестве области определения, и в качестве области значений множество D всех действительных чисел. Далее, выберем два действительных числа a1 и r и каждому действительному числу х поставим в соответствие число а1+-1)r. Мы получаем функцию с областью определения D и областью значений D.

Заметим, что в примерах 4 и 5 одинакова область значений D и одинаково правило соответствия: формулы a1+(n-1)r и а1+(х-1)r показывают, что в обоих случаях надо над выбранным числом (n или х) проделать одни и те же действия, чтобы узнать, какое число поставлено ему в соответствие. Однако области определения этих двух функций различны, и потому мы имеем в примерах 4 и 5 разные функции. Таким образом, для задания функции мало указать правило соответствия, а надо еще обязательно указать область определения и область значений.

Для обозначения функций обычно пользуются буквами. Одна буква (чаще всего х) используется для обозначения произвольного элемента, взятого из области определения функции. Эта буква называется аргументом. Таким образом, если сказано, что х - аргумент некоторой функции, то вместо х мы можем подставить любой элемент, принадлежащий области определения этой функции. Далее, другая буква (чаще всего у) используется для обозначения произвольного элемента, взятого из области значений. Эта буква называется функцией (и это второе значение слова «функция»). Наконец, третья буква (чаще всего f) используется для обозначения правила соответствия. Это значит, что если а - произвольное значение аргумента (т. е. произвольный элемент, взятый из области определения функции), то элемент, поставленный ему в соответствие, обозначается через f(а). Элемент y = f(а) называется значением рассматриваемой функции при х=а.

Все три буквы х, у, f объединяются одной записью:

y=f(x) (1)

(«игрек равен эф от икс»), которая и означает, что х - аргумент,
у - функция, а f - правило соответствия. Иногда букву f или выражение f(х) также называют функцией (и это - уже третье значение слова «функция»).

Пример 6. Обратимся снова к функции, рассмотренной в примере 4. Аргумент обозначим через п, функцию - через у, а правило соответствия - через f. Таким образом, мы запишем эту функцию в виде у=f(n). Вот несколько значений этой функции:

f(1)=a1, f(2)=a2=a1+r, f(3)=a3=a1+2r и т. д.

Разумеется, вместо букв х, у, f можно использовать и другие буквы. Например, запись s=t означает, что s есть функция аргумента t (или короче: s есть функция от t), причем правило соответствия обозначается буквой .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.