Рефераты. Диалектика развития понятия функции в школьном курсе математики

точки зрения диалектического материализма в объективном реальном мире дискретное и непрерывное, движение и покой находятся в диалектическом единстве. Но нельзя отобразить движение, не остановив его, т.е. не прибегая к покою -- его противоположности.

В настоящее время в основе изучения геометрии и математического анализа лежит понятие о вещественном числе. Множество вещественных чисел, как и множество точек прямой, обладает свойством непрерывности. Вещественным числом можно выразить отношение двух любых однородных величин. Однако, как известно, расширение понятия числа до вещественного и обоснование соответствующей теории были завершены только в XIX в.. Греки же, которые при открытии несоизмеримости имели представление лишь о дискретном множестве чисел (натуральных и в лучшем случае положительных рациональных), пошли в V--VI вв. по пути геометризации арифметики и строили общую теорию отношений, аналогичную нашей теории вещественных чисел, применяя ее к учению о подобии, к вопросам измерения площадей и объемов и вообще к исследованию непрерывных величин.

Изложим вкратце суть евдоксовой общей теории отношений (величин), содержащейся в V книге «Начал» Евклида (конец IV - III в. до н. э.). Величины здесь изображены отрезками, причем предполагается, что для любой пары величин найдется соответствующая пара отрезков а, b так, что отношение величин будет равно отношению отрезков а:b. В самом начале V книги вводится так называемая аксиома Архимеда, которую правильнее было бы называть аксиомой Евдокса (около 408 - около 355 до н. э.), или аксиомой Евдокса -- Архимеда. Две однородные величины могут находиться в математическом отношении, только если на них распространяется эта аксиома которая является одной из аксиом непрерывности.

Равенство отношений определяется следующим образом: величины А, В имеют то же отношение, что и величины С, D, если для любой пары натуральных чисел тип выполняется какое-либо из следующих трех условий:

1) тА<пВ и тС<пD;

2) тА = пВ и тС = пD;

3) тА>пВ и тC>пD.

Современной операции умножения вещественных чисел у Евдокса соответствует составление отношений. «Составить» пару отношений А:В и В:С -- значит найти отношение А:С, «составленное». Чтобы составить произвольные два отношения а:b и с:d, требуется предварительно найти отношение b:x, равное с:d, что осуществляется путем построения к любым трем отрезкам с, d, b четвертого пропорционального отрезка x. В V книге устанавливаются основные свойства отношений и их составления. Вышеприведенное определение отношений было, вероятно, подсказано Евдоксу как свойствами отношений соизмеримых величин, так и рассмотрением процесса измерения непрерывных геометрических величин. Целесообразность этого определения, конечно, можно проверить на разных примерах. О том, что некоторые математики неправильно его понимали, свидетельствует случай с французским ученым XVI в. П. Рамусом. Последний, возражавший против определения равенства отношений Евдокса, ссылался на следующий пример. Для чисел 4; 3 и 5; 4, т=6, п=9 имеет место неравенство

6·4<9·3 и 6·5<9·4,

но вместе с этим отношение 4:3 не равно отношению 5:4. Рамус не учел, что речь идет не об определенной одной паре или о конечном числе пар натуральных чисел т, п, а о произвольной паре. Достаточно в данном случае взять т=6, п=8, чтобы получить:

6·4=8·3,

в то время как 6·5<8·4.

Именно тот факт, что равенство отношений определяется Евдоксом с помощью бесконечного множества неравенств типа 1) или 3), вызывал много трудностей для понимания его теории, предвосхитившей теорию вещественных чисел Дедекинда (1831-1916). И метод исчерпывания Евдокса основывается на идее неограниченного приближения к некоторой величине с помощью последовательности неограниченного числа значений других величин и на основе безграничного деления любой величины на части, меньшие любых наперед заданных величин, т. е. в конечном итоге на идее потенциальной бесконечности, на которой базируется и метод пределов, которым пользуемся и мы. С помощью метода исчерпывания Евдокс строго доказал, что объем пирамиды равен 1/3 объема призмы с тем же основанием и высотой и другие предложения.

В итоге можно сказать, что идея бесконечности возникла и применялась в древнегреческой математике главным образом в связи с развитием арифметики и теории чисел (натуральный ряд, бесконечное множество простых чисел и др.), с открытием несоизмеримости и с вопросами измерения и исследования свойств геометрических фигур, рассматриваемых как непрерывные.

Понятие бесконечности развивалось в математике в тесной связи с решением конкретных математических задач и соответствующей разработкой математических методов (общая теория отношений, квадратура круга, метод исчерпывания и др.).

Широко использовал бесконечность в своих исследованиях и Архимед.

§1.2. История развития понятия функции.

Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.

Пропедевтический период (с древнейших времен до 17 века).

Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых, математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5 тыс. лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r2. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости.

Введение понятия функции через механическое и геометрическое представления (17 век.)

Начиная лишь с 17 века, в связи с проникновением в математику идеи переменных, понятие функции применяется явно и вполне сознательно.

Путь к появлению понятия функции заложили в 17 веке французские ученые Франсуа Виет (1540-1603) и Рене Декарт (1596-1650); они разработали единую буквенную математическую символику, которая вскоре получила всеобщее признание. Введено было единое обозначение: неизвестных - последними буквами латинского алфавита - x, y, z, известных - начальными буквами того же алфавита - a, b, c, ... и т.д. Под каждой буквой стало возможным понимать не только конкретные данные, но и многие другие; в математику пришла идея изменения. Тем самым появилась возможность записывать общие формулы.

Кроме того, у Декарта и Ферма (1601-1665) в геометрических работах появляется отчетливое представление переменной величины и прямоугольной системы координат. В своей «Геометрии» в 1637 году Декарт дает понятие функции, как изменение ординаты точки в зависимости от изменения ее абсциссы; он систематически рассматривал лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться, таким образом, с понятием аналитического выражения - формулы. В 1671 году Ньютон (1643-1727) под функцией стал понимать переменную величину, которая изменяется с течением времени (называл в «флюентой»).

В «Геометрии» Декарта и работах Ферма, Ньютона и
Лейбница (1646-1716) понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функция от абсцисс (x); путь и скорость - функция от времени (t) и т.п.

Аналитическое определение функции (17 - начало 19 века).

Само слово «функция» (от латинского functio - совершение, выполнение) впервые было употреблено немецким математиком Лейбницем в 1673г. в письме к Гюйгенсу (1629-1695) (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону), в печати ввел с 1694 года. Начиная с 1698 года, Лейбниц ввел также термины «переменная» и «константа». В 18 веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. Это так называемая аналитическая точка зрения на понятие функции. Подход к такому определению впервые сделал швейцарский математик Иоганн Бернулли (1667-1748), который в 1718 году определил функцию следующим образом: «функцией переменной величины называют количество, образованное каким угодно способ из этой переменной величины и постоянных». Для обозначения произвольной функции от x Бернулли применил знак (x), называя характеристикой функции, а также буквы x или ; Лейбниц употреблял x1, x2 вместо современных f1(x) , f2(x). Эйлер обозначил через f:x, f:(x+y) то, что мы ныне обозначаем через f(x), f(x+y).

Наряду с Эйлер предлагает использовать буквы , и другие. Даламбер сделал шаг вперед на пути к современным обозначениям, отбрасывая двоеточие Эйлера; он пишет, например, t, (t+s).

Окончательную формулировку определения функции с аналитической точки зрения сделал в 1748 году ученик Бернулли Эйлер (во «Введении в анализ бесконечного»): «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств». Так понимали функцию на протяжении почти всего 18 века Даламбер, Лагранж (1736-1813), Фурье (1768-1830) и другие видные математики. Что касается Эйлера, то он не всегда придерживался выше указанного определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математического анализа.

В «Дифференциальном исчислении», вышедшем в свет в 1755 году, Эйлер дает общее определение функции: «Когда некоторые количества зависят друг от друга таким образом, что при изменении последних и сами они подвергаются изменению, то первые называют функцией вторых». «Это наименование, - продолжает далее Эйлер - имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других».

Как видно из определенных определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики вызвали и дальнейшее обобщение понятия функции.

Одним из нерешенных вопросов, связанных с понятием функции, по поводу которого велась ожесточенная борьба мнений, был следующий: можно ли одну функцию задать несколькими аналитическими выражениями?

Большой вклад в разрешение спора Эйлера, Даламбера, Бернулли и других ученых 18 века по поводу того, что стоит понимать под функцией, внес французский математик Жан Батист Жозеф Фурье, занимавшийся в основном математической физикой. В представляемых им в Парижскую АН в 1807-1811 гг. Мемуарах по теории распространения тепла в твердом теле, Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями.

Из трудов Фурье следовало, что любая кривая независимо от того, из скольких и каких разнородных частей она состоит, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением. В своем «Курсе алгебраического анализа», опубликованном в 1721г., французский математик О. Коши (1789-1857) обосновал выводы Фурье. Таким образом, на известном этапе развития физики и математики стало ясно, что приходится пользоваться и такими функциями, для определения которых очень сложно или даже невозможно ограничиться одним лишь аналитическим аппаратом. Последний стал тормозить требуемое математикой и естествознанием расширение понятия функции.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.