Рефераты. Диалектика развития понятия функции в школьном курсе математики

p align="left">Следует подчеркнуть, что область значений функции представляет собой множество элементов (или чисел), среди которых обязательно содержатся все значения рассматриваемой функции. Однако в области значений могут содержаться и «лишние» элементы, не являющиеся значениями функции. Иными словами, множество значений функции обязательно содержится в области значений, но не обязательно совпадает с ней. Так, в примере 3 значениями функции являются лишь положительные числа, тогда как область значений есть множество всех действительных чисел. Несовпадение множества значений функции и области значений можно видеть также в примере 4.

В заключение рассмотрим еще одно (четвертое!) понимание слово «функция», являющееся для школьного курса математики наиболее важным. Именно, функцией называют произвольное выражение, содержащее аргумент х, а также знаки действий и числа. Например, функциями (в этом смысле) являются

y=x2+1, (2)

y=, (3)

y=|x-1|, (4)

y=, (5)

y=, (6)

y= (7)

Почему же такие формулы называют «функциями» и не противоречит ли это понимание функции сказанному выше? Связь со сказанным выше устанавливается следующим соглашением, которого мы всюду в дальнейшем будем придерживаться:

Если функция задана в виде равенства, в левой части которого стоит у (или другая буква, обозначающая функцию), а в правой части стоит некоторое выражение, содержащее аргумент х, а также знаки действия и числа (причем область определения не указана), то принято считать, что

за область значений принимается все множество D действительных чисел;

за область определения принимается множество всех тех действительных чисел, при подстановке которых вместо х выполнимы (в множестве действительных чисел) все действия, указанные в правой части;

если число а принадлежит области определения, то значение функции при х=а равно числу, получающемуся, если в правую часть подставить х=а и произвести указанные действия.

Итак, задание функции формулой содержит в себе и указание области определения, и задание правила соответствия.

Пример 7. Найти область определения функций (2) и (3); определить, совпадают ли эти функции.

Решение. Действия, указанные в правой части равенства (2), выполнимы при любом действительном значении х, т. е. областью определения функции (2) является все множество D действительных чисел (или, иначе, бесконечный интервал -<х<). Функция (3) определена для всех действительных чисел х, кроме х=0, т. е. область определения этой функции получается выбрасыванием (или, как еще говорят, «выкалыванием») из множества D точки х=0. Можно описать область определения функции (3) и иначе: она представляет собой объединение двух бесконечных интервалов (-, 0) и (0, ).

Заметим, что при любом х0 значения функций (2) и (3) совпадают. Тем не менее (2) и (3)--различные функции, так как их области определения не совпадают.

Пример 8. Найти области определения функций (5),

Решение. Функция (5) определена для всех значений аргумента, кроме х=-2. Таким образом, область определения этой функции получается выкалыванием из числовой оси точки х=-2; иначе говоря, эта область определения является объединением двух бесконечных интервалов (-, -2) и (-2, ).

Область определения функции (6) состоит из всех точек, для которых подкоренное выражение неотрицательно, т.е. эта область определения задается неравенством 1+х0, или х-1. Иначе говоря, область определения функции (6) представляет собой бесконечный полуинтервал [-1,). Концевая точка х=-1 этого полуинтервала принадлежит области определения .

Наконец, область определения функции (7) состоит из всех значений х, для которых подкоренное выражение в правой части равенства (7) неотрицательно. Но если это подкоренное выражение отлично от нуля, то оно непременно отрицательно. Значит, область определения функции (7) состоит лишь из тех точек х, для которых подкоренное выражение обращается в нуль. Это будет при х=-5, х=-1 и х=2. Таким образом, область определения функции (7) состоит лишь из трех точек: -5, -1 и 2.

Пример 9. Найти область определения функции где f(х)= и g(x)=.

Решение. Первое слагаемое f(х) определено при выполнении двух условий: 1) подкоренное выражение

Область определения функции f(x)

0 1 2

Область определения функции g(x),

0

Область определения функции f(x)+g(x).

0 1 2

Рис. 1.

неотрицательно, 2) знаменатель не обращается в нуль. Первое условие означает, что x второе условие означает, что х2. Таким образом, область определения функции f(х) представляет собой объединение полуинтервала [1,2) и бесконечного интервала (2,). Далее, второе слагаемое g(x) определено при 5-x20, т.е. при -х. Иначе говоря, областью определения функции g(x) является отрезок [-,+].

Но для того, чтобы некоторая точка х=а принадлежала области определения функции у=f(х)+g(х), необходимо и достаточно, чтобы при х=а была определена и функция f(х), и функция g(х). Иными словами, область определения функции у=f(х)+g(х) представляет собой пересечение областей определения функций f(х) и g(х). Следовательно (рис. 1), область определения функции у=f(х)+g(х) представляет собой объединение полуинтервалов [1, 2) и (2, ].

§ 3.4. График функции.

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х, а на оси ординат - значения функции у=f(х). Графиком функции у=f(х) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции y=f(x).

Другими словами, график функции у=f(х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y=f(x).

Рис. 3.

Рис. 2.

На рис. 2 и 3 приведены графики функций у=2x+1 и у=х2-2х.

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его куска, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х=а принадлежит области определения функции y=f(x), то для нахождения числа f(а) (т. е. значения функции в точке х=а) следует поступить так. Нужно через точку с абсциссой x=а провести прямую, параллельную оси ординат; эта прямая пересечет график функции у=f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 4). Например, для функции f(х)2-2х

Рис. 4.

с помощью графика (рис. 3) находим f(-1)=3, f(0)=0, f(1)=-1, f(2)=0 и т.д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 3 ясно, что функция y=х2-2х принимает положительные значения при х<0 и при x>2, отрицательные - при 0<х<2; наименьшее значение функция у=х2-2х принимает при х=1.

Для построения графика функции f(х) нужно найти все точки плоскости, координаты х, у которых удовлетворяют уравнению у=f(х). В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, x1, х2, ..., хk - и составляют таблицу, в которую входят выбранные значения функции. Таблица выглядит следующим образом:

x

x1

x2

xk

y

f(x1)

f(x2)

f(xk)

Составив такую таблицу, мы можем наметить несколько точек графика функции у=f(х). Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y=f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле, поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 10. Для построения графика функции y=f(х) некто составил таблицу значений аргумента и функции:

x

-2

-1

0

1

2

y

-1

0

1

2

3

Соответствующие пять точек показаны на рис. 5. На основании расположения этих точек он сделал вывод,

Рис. 5.

что график функции представляет собой прямую (показанную на рис. 5 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. Простой пример иллюстрирует сказанное. Рассмотрим функцию

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.