Главная:
Рефераты
На главную
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Рефераты. Математические игры, как средство развития логического мышления
адача развития логического мышления учащихся ставится и определенным образом решается в массовой школе. Во всех школьных программах по математике как одна из целей обучения предмету отмечена - развитие логического мышления.Но программы по математике пока не содержат расшифровки этой цели. Поэтому каждый учитель понимает ее по-своему и по-своему ее решает. Представляется, что есть необходимость осознавать проблему развития логического мышления во всей широте и многогранности и уметь ее реализовывать. Для этого можно использовать математические игры, которые способствуют более четкому мышлению, помогают формулировать умозаключения.В этом случае выработка умений учащихся логически мыслить протекает быстрее. С другой стороны занимательность материала может способствовать развитию интереса к математике в целом, что тоже не маловажно.Я предлагаю развивать логическое мышление по средствам математических игр, о чем и расскажу в следующей главе.
Глава 2 Возможности применения математических игр для развития логического мышления
2.1 Понятие математической игры и ее психолого-педагогические основы
Понятие математической игры сложное. Жестких определений этого понятия нет, разные авторы понимают это по-разному. Я считаю наиболее подходящим определение предложенное Е.А. Дышниским: Математические игры - это игры в виде разнообразных задач и упражнений занимательного характера, требующих проявления находчивости, оригинальности мышления, смекалки, умения критически оценить условия и постановку вопроса. К математическим играм относятся либо игры, имеющие дело с фигурами, числами, и тому подобным, либо игры, результат которых может быть предварительно предопределён теоретическим анализом [11].Математическая игра является одной из форм внеклассной работы по математике. Она используется в системе внеклассной работы для формирования у детей интереса к предмету, приобретения ими новых знаний, умений, навыков, углубление уже имеющихся знаний. Игра наряду с учением и трудом - один из основных видов деятельности человека, удивительный феномен нашего существования.Что же понимается под словом игра? Термин "игра" многозначен, в широком употреблении границы между игрой и не игрой чрезвычайно размыты. Как справедливо подчеркивал Д.Б. Эльконин [24] и С.А. Шкаков [30], слова "игра" и "играть" употребляются в самых различных смыслах: развлечение, исполнение музыкального произведения или роли в пьесе. Ведущая функция игры - отдых, развлечение. Это свойство как раз и отличает игру от не игры.Российский психолог А.Н. Леонтьев считает игру ведущим типом деятельности ребенка, с развитием которой происходят главные изменения психики детей, подготавливающие переход к новой, высшей степени их развития. Забавляясь и играя, ребенок обретает себя и осознает себя личностью.Игра, в частности математическая, необычайно информативна и многое "рассказывает" самому ребенку о нем. Она помогает найти ребенком себя в коллективе сотоварищей, в целом обществе, человечестве, во вселенной.В педагогике к играм относят самые разнообразные действия и формы занятий детей. Игра - это занятие, во-первых, субъективно значимое, приятное, самостоятельное и добровольное, во-вторых, - имеющее аналог в реальной действительности, но отличающаяся своей не утилитарностью и буквальностью воспроизведения, в-третьих, - возникающая спонтанно или создаваемая искусственно для развития каких-либо функций или качеств личности, закрепления достижений или снятия напряжения.А.С. Макаренко считал, что "игра должна постоянно пополнять знания, быть средством всестороннего развития ребенка, его способностей, вызывать положительные эмоции, пополнять жизнь детского коллектива интересным содержанием" [17].Можно дать следующее определение игры. Игра - вид деятельности, имитирующий реальную жизнь, имеющий четкие правила и ограниченную продолжительность. Но, несмотря на различия в подходах к определению сущности игры, ее назначения, все исследователи сходятся в одном: игра, в том числе математическая, является способом развития личности, обогащения ее жизненного опыта. Поэтому игра используется как средство, форма и метод обучения и воспитания.Существует много классификаций и видов игры. Если классифицировать игру по предметным областям, то можно выделить математическую игру.
Математическая игра по области деятельности это, прежде всего, интеллектуальная игра, то есть игра, где успех достигается в основном за счет мыслительных способностей человека, его ума, имеющихся у него знаний по математике
.
Математическая игра помогает закреплять и расширять предусмотренные школьной программой знания, умения и навыки.В современной школе математическая игра используется в следующих случаях: в качестве самостоятельной технологии* для освоения понятия, темы или даже раздела учебного предмета; как элемент более обширной технологии; в качестве урока или его части; как технология внеклассной работы.Математическая игра, включенная в занятие, и просто игровая деятельность в процессе обучения оказывают заметное влияние на деятельность учащихся. Игровой мотив является для них действительным подкреплением познавательному мотиву, способствует созданию дополнительных условий для активной мыслительной деятельности учащихся, повышает концентрированность внимания, настойчивость, работоспособность, создает дополнительные условия для появления радости успеха, удовлетворенности, чувства коллективизма [11].Математическая игра, да и любая игра в учебно-воспитательном процессе, имеет характеристические черты. С одной стороны, условный характер игры, наличие сюжета или условий, наличие используемых предметов и действий, с помощью которых происходит решение игровой задачи. С другой стороны, свобода выбора, импровизация во внешней и внутренней деятельности позволяют участникам игры получать новую информацию, новые знания, обогащаться новым чувственным опытом и опытом мыслительной и практической деятельности. Через игру, реальные чувства и мысли участников игры, их положительный настрой, реальные действия, творчество возможно успешное решение учебно-воспитательных задач, а именно, формирование положительной мотивации в учебной деятельности, чувства успеха, интереса, активности, потребности в общении, желании достичь лучшего результата, превзойти себя, повысить свое мастерство [26].Математических игр очень много. В своей работе я рассмотрю только некоторые. А именно "игры на бумаге". Любая из таких игр - это не просто забава. Это целый кладезь новой информации и полезных навыков, тренажер, учащий мыслить и рассуждать.С моей точки зрения, целесообразно для начала рассмотреть простую на первый взгляд игру (которая известна почти всем) - крестики-нолики. Хотя правила игры довольно просты, это вовсе не означает, что и сама игра элементарна. В крестики-нолики можно играть в качестве разминки на уроке. Но чтобы ее проанализировать понадобится несколько занятий.С моей точки зрения, наиболее эффективными для развития логического мышления являются игры на отгадывание. Стремление к разгадыванию различных загадок и тайн свойственно человеку в любом возрасте. Детская страсть к играм и головоломкам "на отгадывание" иногда пробуждает у школьников желание целиком посвятить себя математике, физике, биологии, чтобы "отгадать" уже более серьезные, научные загадки и проблемы. Лучшие отгадчики в последствии, случается, создают математические теории, расшифровывают древние папирусы или открывают новые законы природы. Несомненно, игры на отгадывание развивают творческие способности человека, его логическое мышление, учат ставить важные вопросы и находить на них ответы.Все игры на отгадывание во многом похожи друг на друга - один игрок что-то загадывает, задумывает или расставляет, а другой, задавая те или иные вопросы и получая ответы на них, должен найти разгадку, определить задуманный объект. В этой главе я рассмотрю три игры на отгадывание, содержащие определенные математические и логические элементы. В игре "быки и коровы" - требуется отгадать число, в "отгадать слово" - определить слово, а в игре "морской бой" - обнаружить расположение кораблей. Во всех трех играх, построенных на вопросах и ответах, отгадчик на каждом ходу извлекает некоторую информацию о задуманном объекте и после ряда вопросов отгадывает его (то есть находит задуманное число, слово или расположение кораблей). Цель игры заключается в том, чтобы определить объект, задав как можно меньше вопросов. Загадчик и отгадчик меняются ролями, и победитель определяется по совокупности встреч.Каждая из игр обычно занимает не много времени, но если анализировать эти игры, искать выигрышные стратегии, то это может занять несколько занятий.Ниже предложена разработка факультативного курса, для старших классов.Я предлагаю следующее тематическое планирование. Посвятить:Крестики-нолики - 2 часа;Морской бой - 3 часа;Отгадай слово - 2 часа;Быки и коровы - 3 часа;Резерв - 2 часа.Это приблизительное планирование, в зависимости от того с какой скоростью школьники разбирают предложенные игры, можно увеличить или уменьшить предложенное количество часов.Для этого факультатива не требуется специальных знаний, и он в занимательной форме способствует развитию логического мышления.
2.2 Крестики-нолики (2ч)
Учитель рассказывает правила игры и некоторые аспекты игры: Итак, самая простая игра - крестики-нолики на доске 3Ч3. Даже на таком простом примере можно проиллюстрировать многие важные понятия математической теории игр. Игра "3 в ряд" относится к категории конечных, переборных, стратегических игр двух лиц. Вначале урока школьникам нужно объяснить правила игры: партнеры по очереди ставят на поля квадрата (доски) крестики и нолики, и выигрывает тот, кто первым выстроит три своих знака в ряд. Игра длится не более девяти ходов. Если никому из игроков не удается добиться цели, партия заканчивается вничью.Теперь давайте сыграть. Разбейтесь на пары и начинайте игру (3 - 4 мин). После нескольких партий мы проанализируем игру.Учитель предлагает школьникам проанализировать игры, для этого они рассматривают как составить дерево перебора. Переходя от крестиков-ноликов к дереву перебора школьники учатся абстрагированию и анализу. При обратной операции ("от дерева к партии") развивают конкретизацию.Учитель: Составляя дерево, будем обозначать вершинами (точками) возникающие в процессе игры "позиции" (расположения крестиков и ноликов). Пусть начинают крестики. Соединим начальную вершину (пустая доска) с теми девятью, которые отвечают первому ходу крестиков. Каждую из них соединим с восемью вершинами, отвечающими ходами ноликов, и т.д. В результате мы получаем дерево игры (дерево перебора) [Приложение 1]. Начальная вершина - корень дерева, максимальная длина ветви (глубина перебора) в данном случае равна девяти.Рассмотрев часть дерева перебора, с помощью вопросов учитель приводит школьников к мысли, что необходимо выделить группы партий, которые отличаются друг от друга по какому-либо признаку, например по первой занятой клетке.Дети, анализируя сыгранные партии, приходят к выводу: У крестиков три принципиальных начала - занять угол, центр или боковую клеточку доски.Рисунок 1Учитель задает вопросы, чтобы дети проанализировали, что будет если крестики не будут занимать первым ходом центральное место:Учитель: Пусть крестики сделали ход а1. Какие возможные ходы есть у ноликов?Ученик: Из восьми возможных ответов правильным для ноликов является лишь ход в центр доски. После этого ничья достигается без труда (а1 рисунок 1)Учитель: Предположим, что нолики сыграли иначе: на a1 ответили b1. Тогда следует ход крестиков а3. Каким должен быть ход ноликов?Ученик: Единственный ответ ноликов а2.Учитель: На что решает ход с3. Каким будет следующий ход ноликов и чем закончится пария?Ученик: Это партия заканчивается с вилкой, то есть с двойной угрозой b2 или b3 (рисунок 1а). Следующим ходом крестики ставят третий знак и выигрывают.
Страницы:
1
,
2
,
3
, 4,
5
,
6
,
7
,
8
,
9
,
10
Апрель (48)
Март (20)
Февраль (988)
Январь (720)
Январь (21)
2012 © Все права защищены
При использовании материалов активная
ссылка на источник
обязательна.