Рефераты. Педагогическая технология развития у учащихся направленности на диалогическое общение при групповой форме обучения на уроках физики при изучении темы "Основы электродинамики" в средней школе

p align="left">

Тема "Основы электродинамики" занимает важнейшее место в курсе физики, на ее изучение отводится 30% от общего времени. Основы закладываются в основной школе в 8 классе. От уровня усвоения темы зависит ее дальнейшее понимание при последующем изучении, в 10 или 11 классе, в зависимости от выбора профиля изучения материала.

Данная тема является одной из сложнейших тем, так как большинство понятий темы абстрактны, их нельзя почувствовать, увидеть, они сложны для понимания. Учителя физики должны решать весьма сложные общеобразовательные, воспитательные задачи и задачи развития учащихся. Этим и определяется в первую очередь значение раздела "Основы электродинамики".

Тема содержит полезный материал для решения задач политехнического образования: расчеты физических величин, знакомство с различными электроизмерительными приборами, сборка электрических цепей и др.

В этой теме рассматриваются следующие вопросы:

Электризация тел, электрический заряд, два вида заряда, взаимодействие зарядов, закон сохранения зарядов, электрическое поле, действие электрического поля на электрические заряды, проводники, диэлектрики, полупроводники, конденсатор, энергия электрического поля конденсатора, элементарный электрический заряд, закон сохранения элементарного заряда, сила тока, напряжение, сопротивление, закон Ома, работа и мощность электрического тока, закон Джоуля-Ленца.

Проводятся следующие демонстрации и лабораторные работы:

Электризация тел, два рода зарядов, устройство и действие электроскопа, проводники и изоляторы, электризация через влияние, устройство конденсатора, энергия заряженного конденсатора.

Наблюдение электрического взаимодействия тел.

Взаимосвязь этих вопросов отражена в блок-схеме.

Блок схема.

2.2 Краткая историческая справка.

Еще в глубокой древности люди заметили, что янтарь, потертый о шерсть, приобретает способность притягивать к себе различные тела: соломинки, пушинки, ворсинки меха и т.д. В дальнейшем установили, что этим свойством обладают и другие вещества: стеклянная палочка, потертая о шелк, палочка из органического стекла, потертая о бумагу, эбонит, потертый о сукно или мех.

В 1745г. Голландский ученый Питер Мушенберг разослал из Лейдена сообщение об эксперименте, который вошел в физику под названием «лейденского опыта». Опыт проводился с «лейденской банкой» - первым конденсатором - два проводника, разделенных слоем диэлектрика. В стремлении усилить электрическое действие, Винклер начал соединять лейденские банки в батареи. Ему удалось таким образом получить искры, которые были видны и слышны на расстоянии до двух сот шагов.

В 1750г. Франклин изложил идею молниеотвода для предохранения зданий и кораблей от ударов молнии, а в 1953г. Описал наиболее эффективную модель молниеотвода. Так же он выдвинул теорию о том, что электричество - это особая форма материи; она состоит из частиц, размеры которых меньше размеров частиц “обычного” вещества; между электрическими частицами действуют отталкивающие силы. Он объясняет существование “стеклянного” и ”смоляного” электричества. Так в физике появились понятия положительного и отрицательного заряда.

Со второй половины XVIIIв. появилось понятие количества электрической жидкости.

С 1785 по 1789гг. Кулон проводил опыты по кручению нити, обнаруживающие пропорциональность между моментом закручивающей нити и углом, которые привели его к точным измерениям электрических и магнитных сил. Кулон заключил: “Сила отталкивания двух больших одинаково наэлектризованных шариков, обратно пропорциональна квадрату расстояния центров обоих шариков”.

В 1838г. Фарадей дает первую формулировку закона сохранения электрического заряда.

Открытие постоянного электрического тока и изучение его свойств началось в XIXв.

В сентябре 1786г. Профессор анатомии и медицины Луиджи Гальвани обнаружил факт, который спустя пять лет в “Трактате о силах электричества при мышечном движении” описал в следующих словах: “Если держать лягушку пальцами за одну лапку так, чтобы крючок (медный) проходил через спиной мозг, касался бы какой-нибудь серебряной пластинки, а другая лапка свободно могла касаться той же пластинки то как только эта лапка касается указанной пластинки, мышцы начинают немедленно сокращаться”.

В 1785г. он обобщает свои исследования и формулирует фундаментальный вывод: “Животные организму в данных опытах надо рассматривать как чисто пассивные, как простые электроскопы особого рода и, наоборот, активными являются проводники, приведенные ко взаимному соприкосновению, лишь бы они были различными”. А Вольта предлагает разделить все проводники на “сухие” - металлы, некоторые минералу, уголь, ”влажные”.

В 1800г. английский естествоиспытатель Гемфри Дэви собирает водород и кислород в отдельные сосуды и демонстрирует возможность точного определения их объемных отношений, таким образом, он проводит первый физико-химический анализ. В 1808г. он проводит электролиз щелочей и выделяет новые элементы - натрий и калий, а затем металлы щелочных земель. За ним Иоганн Риттер производит электролиз медного купороса и выделяет медь.

В 1812г. Дэви открыл электрическую дугу.

В 1815г. уже было известно, что металлы имеют различную проводимость.

В 1821г. Дэви установил, что металлы можно разложить в ряд по возрастающей проводимости.

В 1920г. немецкий физик Иоганн Швейгер изобрел первый прибор для измерения силы тока - мультипликатор и Георг Симон Ом начал свои эксперименты. Ом вводит понятие “электроскопической силы”, пользуется понятием силы тока и записывает закон для участка цепи.

В 1832г. Фарадей посвящает специальную серию исследований доказательству тождественности “обыкновенного”, гальванического электричества, термоэлектричества и т.д.

В 1833г. Фарадей проводит исследования электропроводимости.

В 1834г. Гаррис показал, что проводимость воздуха не изменяется при нагревании.

В конце XIXв. после открытия электрона начала развиваться электронная теория проводимости. Ее начало дал Друде, а продолжил Лоренц.

В 1911г. Гейке Камерлинг-Оннес открыл явление сверхпроводимости.

Явление электролиза открыли в начале XIXв., а в его конце был открыт электрон Томсоном и стало ясно, что “молекула электричества” Максвеллу и “атом электричества” Гельмгольца есть заряд элементарной частицы вещества, называемый теперь элементарным зарядом.

1820г. Био и Савар проводят опыты по магнитному действию на тела. Ампер формулирует правило определения направления магнитного действия тела. В начале этого года Ампер открыл притяжение и отталкивание параллельных токов. А Фарадей пытается превратить “магнетизм в электричество”. Решение чего пришло в 1831г., когда он предположил, что индукция должна возникать при нестационарном процессе - основа открытия явления электромагнитной индукции. Математическое выражение закона электромагнитной индукции дал в 1873г. Максвелл.

2.3 Возможности учебного материала для развития мировоззрения, мышления, политехнического развития обучения.

Научные возможности темы.

Научные возможности темы "Основы электродинамики" огромны. Здесь учащиеся знакомятся с новыми физическими величинами, законами, значение и тех и других очень важно в жизни: учащиеся впервые знакомятся с новыми физическими величинами и единицами их измерений; знакомятся с новыми физическими явлениями (электризация тел, делимость заряда и др.); знакомятся с новыми законами физики - законом Ома и Джоуля - Ленца, законом сохранения; углубляется представление о фундаментальных физических величинах - работе, мощности; знакомятся с новым видом существования материи - электрическим полем; подчеркиваются физические характеристики поля, заряда, вещества - напряжение, сила тока, сопротивление; углубляются знания о строении вещества, а именно тема позволяет "заглянуть" внутрь атома и показать его строение по модели Резерфорда; узнают о том, что существуют два вида зарядов; рассматривают основы электронной теории.

Мировоззренческое значение темы.

Тема позволяет накопить материал для последующих обобщений и создать у учеников представление о материи и ее движении и о взаимосвязи явлений: убеждаем в существовании явления электризации тел в природе; показываем, сложность атома; убеждаем в существовании особого вида материи - электрического поля; подчеркиваем характеристики заряда, поля, проводника; подчеркиваем связь между силой тока, сопротивлением и напряжением; убеждаем в реальной объективности закона Ома для участка цепи при последовательном и параллельном соединениях; убеждаем в существовании закона Джоуля - Ленца; показываем исторический аспект темы, развитие данного раздела физики и техники отечественными и зарубежными учеными; показываем отличие движения заряженных частиц в проводнике и сверхпроводнике; показываем различие между электрическими и гравитационными полями; убеждаем, что всякое взаимодействие передается с конечной скоростью.

Развивающее значение темы.

Данная тема обладает большими возможностями для развития умений наблюдать, анализировать конкретные ситуации, выделять определенные признаки, сравнивать наблюдаемые явления: данная тема вносит большой вклад для развития логического и абстрактного мышления; используются аналогии; широко используется экспериментальный метод; развиваются умение строить и читать графики, строить схемы электрических цепей, читать эти схемы, собирать их; развитие умений видеть в быту, технике электрические явления и объяснять их с помощью изученного материала; развитие умений, навыков работы с приборами: амперметром, вольтметром, реостатом; продолжение развития умений работать с учебником, справочником, умений делать записи в тетрадях и т.п.

Политехническое значение темы.

Значение темы в политехническом аспекте огромно, т.к. учащиеся на каждом шагу сталкиваются с электричеством в повседневной жизни. С изучением данной темы программа предусматривает формирование у учащихся целого ряда практических умений и навыков: сборка простейших электрических цепей; включение измерительных приборов в цепь; измерение силы тока, напряжения, ЭДС; определение сопротивления проводников; измерение силы тока в цепи с помощью реостата; определение работы и мощности тока; расчет полного сопротивления, напряжения, силы тока при различных соединениях элементов цепи.

2.4 Физический эксперимент.

Электризация тел.

Оборудование: 1)маятник электрический на изолирующем штативе, 2)палочка из органического стекла, 3)палочка из эбонита, 4)кусок меха.

Опыта показывает факт электризации тел. Палочку из органического стекла натирают куском меха, а затем осторожно подносят к висящей на шелковой нити станиолевой гильзе электрического маятника. Гильза притягивается к палочке, обнаруживая тем самым, что палочка находится в необычном состоянии: она наэлектризована.

Опыт повторяют, заряжая трением о мех эбонитовую палочку или гребенку из пластмассы, трением о бумагу - стеклянную палочку или сургуч, и получают каждый раз тот же результат: наблюдают притяжение маятника к наэлектризованному телу.

Два рода зарядов.

Оборудование. 1)маятники электрические на изолирующих штативах (пара), 2)палочка из органического стекла, 3)палочка из эбонита, 4)кусок меха.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.