После этого ставят вопрос: что нужно для того, чтобы электрический ток возник в проводнике и существовал в нем длительное время? Для ответа на этот вопрос обращаются к опытам. Интересен опыт, в котором легкий шарик, подвешенный на шелковой нити между двумя заряженными пластинами, колеблются. Одна из пластин соединена с электроном. По мере того как шарик движется, прикасаясь поочередно к пластинам с разноименными зарядами, электрическое поле между пластинами убывает, что отмечается электрометром. Если электрического поля между пластинами не будет, прекратится движение шарика. Этот опыт поучителен, его можно рассматривать как модель электрического тока. Обобщая результаты опыта, приходят к выводу: чтобы в проводнике длительное время существовал ток, необходимо все это время поддерживать в нем электрическое поле. Таким путем учащихся подводят к пониманию необходимости источников тока. Далее указывается, что в любом источнике тока совершается работа по распределению положительно и отрицательно заряженных частиц, между которыми действуют силы притяжения. Эта работа совершается силами не электрической" природы. В процессе такой работы на одном полюсе источника тока накапливаются положительно заряженные частицы, а на другом - отрицательные. Между полюсами возникает электрическое поле. Когда полюса соединяют между собой металлическим проводником, то электрическое поле возникает и в проводнике. Под действием этого поля свободные заряженные частицы, имеющиеся в проводнике, станут двигаться в направлении от отрицательного полюса источника к положительному, в проводнике возникает электрический ток.
Для уяснения того, что в источнике тока происходят превращения не электрических видов энергии в электрическую, учащимся показывают работу электрофорной машины, термоэлемента и фотоэлемента и предлагают ответить на вопрос: "Какие превращения энергии происходят в данном источнике тока?"
Более подробно (но без анализа химических реакций) рассматривают гальванические элементы и аккумуляторы. Для опытов надо использовать набор по электролизу.
С электрической цепью учащихся надо ознакомить в процессе лабораторной работы. Умение составлять схемы электрических цепей и знание названий отдельных элементов цепи придут к школьникам постепенно, в процессе дальнейших занятий по электричеству.
Электрический ток в металлах. При изучении темы "Тепловые явления" учащиеся ознакомились с кристаллическим строением твердых тел. Здесь вводят понятие кристаллической решетки и рассказывают о том, что в узлах кристаллической решетки расположены ионы, обладающие положительным зарядом. В пространстве между этими ионами находятся свободные электроны. В отсутствии электрического поля, движение свободных электронов хаотично, а скорости их зависят от температуры. Но если в металлах создать электрический ток, то свободные электроны начнут двигаться в направлении действия электрических сил, при этом их хаотическое движение, называемое тепловым, сохраняется. По проводнику пойдет электрический ток.
Действия электрического тока. С некоторыми действиями электрического тока восьмиклассники уже встречались в быту, поэтому нужно выявить эти знания, а затем обратиться к эксперименту.
Тепловое действие тока следует продемонстрировать следующим образом. Между двумя штативами натягивают никелевую или хромовую проволоку и подключают ее к источнику тока. Увеличивая напряжение, нагревают проволоку до свечения, при этом она прогибается, на что обращают внимание учащихся.
Для демонстрации химического действия тока берут раствор любого электролита, опускают в него два чистых угольных электрода и подсоединяют к источнику тока. Через несколько минут, вынув электроды из раствора электролита, обнаруживают, что один из них покрыт слоем вещества.
Магнитное действие тока обнаруживается по притягиванию к железному сердечнику, вставленного в катушку от школьного разборного трансформатора, стальных скрепок, если катушку подсоединить к источнику постоянного тока.
При введении понятий о проводниках электрического заряда можно воспользоваться простым демонстрационным опытом, для которого не требуется электроскоп.
Металлический стержень располагают на изолирующей подставке горизонтально. Около одного края стержня подвешивают легкий шарик или гильзу так, чтобы шарик и стержень соприкасались. Если прикоснуться к другому концу стержня заряженным телом, то заряд по стержню перейдет к шарику и шарик оттолкнется от стержня. Заменив, металлический стержень стеклянным (или из другого изолятора), убеждаются, что заряд не переходит к другому его концу. Этот опыт легко проделать и в домашних условиях
Сила тока. Амперметр. Представление о сильном или слабом электрическом токе можно дать на основе опытов, воспроизводящих различные его действия. Опыты показывают, что интенсивность электрического тока зависит от заряда, проходящего по цепи в течение одной секунды. Учащиеся должны понять, что чем больше частиц перемещается от одного конца участка цепи к другому, тем больше общий заряд, перенесенный частицами. Электрический заряд, проходящий через поперечное сечение проводника в одну секунду, определяет силу тока в цепи. Надо рассказать учащимся, что в 1948 году на IX Международной конференции по мерам и весам было решено в основу опре-деления единицы силы тока положить явление магнитного взаимодействия двух проводников с током.
Для ознакомления школьников с этим явлением на опыте удобно использовать станиолевые ленты, они мягкие и подвижные. После этого вводят определение силы тока.
С амперметром и правилами включения его в цепь надо ознакомить учащихся на лабораторной работе "Сборка электрической цепи и измерение силы тока на различных участках цепи". Особое внимание следует обратить на то, что сила тока во всех последовательно соединенных участках цепи одинакова.
Напряжение. Вольтметр. Напряжение относится к таким понятиям, ко-торые с трудом воспринимают учащиеся на первой ступени. Как показывает опыт использования различных методических приемов, большинство учащихся не воспринимает сразу это понятие, они постепенно к нему "привыкают". Это факт, с которым приходится считаться. В настоящее время при введении понятия "напряжения" используют энергетический подход. Опираясь на знания учащихся о том, что чем больше сила тока в цепи, тем интенсивнее его действие, тем большую работу совершает ток и, следовательно, больше его мощность. Просят обратить внимание школьников на то, что при одной и той же силе тока в цепи лампа, включенная в городскую цепь, дает больше света, чем лампа от карманного фонаря.
Следовательно, накал электрической лампы зависит не только от силы тока, но и от другой физической величины - электрического напряжения. Электрическим напряжением называют величину, характеризующую электрическое поле и равную отношению работы поля по перемещению заряда к величине этого заряда. Единица напряжения "Вольт" вводится через единицу работы и заряда:
Урок на тему "Напряжение" очень трудный, здесь надо действовать больше убеждениями, чем доказательством. Полезно поработать с таблицей, предложенной в учебнике, где представлены напряжения различных источников Очень важно провести беседу по технике безопасности при работе с источниками напряжения
Измерение напряжения вольтметром демонстрируют в классе, но навыки работы с вольтметром учащиеся должны приобрести на лабораторной работе "Измерение напряжения на различных участках цепи" Школьники должны хорошо усвоить, что вольтметр включают параллельно тому участку цепи, на котором измеряют напряжение
Сопротивление. Закон Ома для участка цепи. Сначала устанавливают на опыте зависимость силы тока от напряжения. Для этого собирают цепь, состоящую из последовательно включенных источника тока, амперметра, спирали из никелевой проволоки, ключа и параллельно подсоединенного к спирали вольтметра
Замыкают цепь и записывают показания приборов. Затем с помощью реостата меняют напряжение на концах проводника (на реостате не следует фиксировать внимание учащихся) Результаты опыта заносят в таблицу. Анализ результатов опыта показывает, что силы тока прямо пропорциональна напряжению на концах проводника
Далее учащимся задают вопрос "Зависит ли сила тока от свойств проводника?" Демонстрируют опыт с двумя проводниками Для этого опыта можно использовать эталоны сопротивления, но нагляднее опыт получится с двумя линейными проводниками - никелиновым и железным Хорошо подобрать такие проводники, чтобы сопротивление одного было больше или меньше другого в два или три раза Напряжение на проводниках при этом поддерживают одинаково. Опыт показывает, что сила тока в цепи зависит не только от напряжения, но и от свойств проводника, содержащегося в цепи. Зависимость силы тока от свойств проводника объясняют тем, что различные проводники обладают различным сопротивлением - R. Таким образом, сопротивление проводника не определяют, а вводят описательно для дальнейшего изучения.
Наличие сопротивления у проводника следует объяснить на основе электронной теории. Затем вводят единицу сопротивления 1 Ом.
Далее переходят к рассмотрению закона Ома. Связь между напряжением и силой тока была уже установлена на опыте. Учащиеся узнают, что сила тока в цепи прямо пропорциональна напряжению на концах участка цепи (проводника). Обращают внимание ребят на это еще раз и подчеркивают, что сила тока в цепи прямо пропорциональна напряжению, если сопротивление участка цепи не меняется.
Затем на опыте демонстрируют зависимость силы тока от сопротивления участка цепи при постоянном напряжении на его концах.
Результаты опыта заносят в таблицу и по ним строят график. Затем делают вывод: при одинаковом напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению. Установив зависимость силы тока от напряжения и сопротивления формулируют закон Ома.
На применение закона Ома в классе необходимо разобрать несколько примеров, решить простые задачи на определение силы тока, сопротивления, напряжения.
Далее ставят перед учащимися вопрос: "От чего и как зависит сопротивление проводника?" Основываясь на знании природы электрического сопротивления, школьники высказывают свои предложения. На основе анализа этих высказываний выдвигают гипотез, что сопротивление проводника должно зависеть от размеров и рода вещества, из которого он изготовлен. Эти предположения проверяют экспериментально.
Выводы делают на основе результатов измерений, занесенных в таблицу. Вводят понятие удельного сопротивления. Здесь рекомендуют отступить от единиц СИ, в которой удельное сопротивление - сопротивление проводника длиной 1 м и площадью поперечного сечения 1м2. На практике обычно имеют дело с тонкими проводниками, поэтому за удельное сопротивление принимают сопротивление проводника длинной 1м и сечением 1мм2. Формулу вводят в процессе обобщения результатов опыта.
Целесообразно тщательно рассмотреть таблицы удельных сопро-тивлений некоторых веществ и решить совместно с учащимися несколько примеров на расчет сопротивлений проводников.
Реостат - очень важный прибор, поэтому его устройство и включение в цепь нужно очень тщательно рассмотреть на уроке.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13