Рефераты. Развитие логического мышления учащихся при решении задач на построение

противоположность аналитическому, интуитивное мышление характеризуется тем, что в нем отсутствуют четко определенные этапы. Оно имеет тенденцию основываться, прежде всего, на свер-нутом восприятии всей проблемы сразу. Человек достигает ответа, который может быть правильным или ошибочным, не осознавая при этом (если вообще такое осознание имеет место) тот процесс, посред-ством которого он получил искомый ответ... Обычно интуитивное мышление основывается на знакомстве с основными знаниями в данной области и с их структурой, и это дает ему возможность осуществляться в виде скачков, быстрых переходов, с пропуском отдельных звеньев; эти особенности требуют проверки выводов аналитическими средствами - индуктивными или дедуктивными».

В процессе традиционного школьного обучения математике иногда основное внимание уделяется точному воспроизведению школьником полученных им знаний. Поэтому нередко своеобразный ответ одаренного учащегося ценится меньше, чем хорошо заучен-ный ответ другого. В первом случае, хотя учащийся не в состоянии четко изложить ход своих мыслей, он приходит к правильному ре-зультату, показывая хорошее умение применять свои знания, во втором - учащийся много и правильно говорит, но по существу не умеет пользоваться понятиями, выраженными в его речи.

Часто преподавание математики строится именно так. Школь-ник учится не столько понимать математические отношения, сколь-ко просто применять определенные схемы или правила без понима-ния их значения и связи. После такого неудачного начала обуче-ния учащийся приходит к убеждению, что самое важное - быть «точным», хотя точность относится скорее к вычислениям, чем вообще к математике. Американский педагог-психолог Д. Брунер пишет, что «...Быть может, самым поразительным примером такого подхода является первоначальное изложение евклидовой геометрии учащимися средней школы в виде ряда аксиом и теорем без всякой опоры на непосредственный опыт оперирования простыми геометри-ческими формами. Если бы ребенок раньше овладел понятиями и доступными ему способами действий в виде «интуитивной» геометрии, то он смог бы более глубоко усвоить смысл теорем и аксиом, которые ему объясняются позднее».

В настоящее время развитие интуитивного мышления привлекло внимание многих прогрессивных педагогов-математиков. На роль интуиции в обучении математики указывает А. Н. Колмогоров, Который пишет: «...Везде, где это возможно, математики стремятся сделать изучаемые ими проблемы геометрически наглядными.

...Геометрическое воображение, или, как говорят, «геометриче-ская интуиция», играет большую роль при исследовательской работе почти во всех разделах математики, даже самых отвлечен-ных. В школе обычно с особенным трудом дается наглядное пред-ставление пространственных фигур. Надо, например, быть уже очень хорошим математиком (по сравнению с обычным школьным уровнем), чтобы, закрыв глаза, без чертежа ясно представить себе, какой вид имеет пересечение поверхности куба с плоскостью, про-ходящей через центр куба и перпендикулярной одной из его диаго-налей».

Правда, значение интуиции нельзя переоценивать. Конечно, человек с хорошо развитой способностью к интуитивному мышле-нию обычно обладает определенными математическими способно-стями, но сама по себе интуиция не может обеспечить хорошего зна-ния предмета.

Д. Брунер высказывает мысль, что «может быть, прежде всего, нужно создать интуитивное понимание материала и только тогда знакомить учащихся с более традиционными и формальными мето-дами дедукции и доказательства».

То же самое отмечает и Э. Кастельнуово в книге «Дидактика математики».

Говоря об обучении геометрии, она указывает, что надо сделать так, чтобы курсу «рациональной» геометрии предшествовал курс «интуитивной» геометрии. Этот курс должен быть построен таким образом, чтобы к 14 годам дети имели полное представление о мире геометрических фигур и вопросы, изученные в начале на интуитив-ной основе, были затем повторены с более абстрактной точки зрения, т. е. предлагается метод действия с объектом, а не метод наблюдения над ним.

Автор ставит вопрос: «Если ясно, что надо начинать с изложения курса интуитивной геометрии, исходя из конкретного развития понятий и свойств, то какой смысл следует придавать опоре на конкретное?» И приводит пример, рассказывающий о различном подходе к конкретному: представим, что с детьми 11 лет мы изучаем квадрат. Чтобы дать определение этой фигуры, впрочем, уже из-вестной всем детям этого возраста, исходя из конкретного, можно вырезать квадраты из листа бумаги и дать детям задание наблюдать за сторонами и диагоналями вырезанных квадратов. Можно при-вести примеры предметов, имеющих форму квадратов, сравнить квадраты с другими видами четырехугольников. Все это делается для того, чтоб ученик смог самостоятельно дать определение. Отправляясь от небольшого числа наблюдений неподвижных фигур, учащийся 11 лет, как правило, не способен сделать это самостоя-тельно.

Автор предлагает другой, более естественный путь, используя не наблюдения над объектом, а действия с объектом.

Детям дают равные между собой планки и винты для их скреп-ления. Скрепив планки, учащиеся замечают, что фигура, которую они получили, может изменятся, преобразовываться в ромб.

Если сосредоточить внимание ребенка на элементах, которые не изменяются и которые изменяются при переходе от одной фигуры к другой, то он сможет интуитивно почувствовать постоянство суммы величин углов и изменение суммы длин диагоналей через рассмотрение предельных случаев, когда ромб «стремится» к отрезку. В этом случае наблюдение за большим числом фигур образующихся при преобразовании квадрата, приводит к характеристике и квадрата через ромб и, следовательно, к определению фигуры.

Д. Брунер задает вопрос: «Является ли более вероятным раз-витие интуитивного мышления учащегося в тех случаях, когда пре-подаватель сам мыслит интуитивно?.. Кажется невероятным, что-бы учащийся мог развить у себя или имел доверие к интуитивному методу мышления, если он никогда не видел, как его эффективно используют взрослые. Учитель, который готов по догадке давать ответ на вопрос, заданный классом, и затем подвергнуть свою до-гадку критическому анализу, быть может, с большим успехом сформирует у своих учащихся умение пользоваться интуицией, чем тот учитель, который анализирует все свои впечатления заранее...

...Следует ли стимулировать учащихся к догадкам? Как созда-вать ситуации, требующие напряжения интеллектуальных про-цессов? Возможно, что имеются определенные условия, в которых догадки желательны и могут в некоторой степени способствовать нормированию интуитивного мышления. Такие догадки нужно заботливо развивать. Однако в школе выдвижение догадки часто тяжело наказывается и как-то ассоциируется с леностью учащихся. Конечно, никому бы не понравилось, если бы наши учащиеся не отмели совершать иных интеллектуальных операций, кроме догадок, как за догадками всегда должны следовать проверка и подтвер-ждение в той мере, в какой это необходимо... Не лучше ли для учащихся строить догадки, чем лишаться дара речи, когда они не могут немедленно дать правильный ответ?»

Поэтому в процессе обучения математике следует всячески по-ощрять у учащихся желание и способность к догадке. При этом сле-дует каждый раз обращать внимание учащихся на то, что каждая гипотеза, выдвинутая при помощи догадки, нуждается в проверке на правдоподобность и в обосновании (если она не будет опровергнуты каким-либо примером).

Интуитивное мышление нередко проявляется в процессе умозаключений по аналогии.

Так, например, пусть нам известно, что центр тяжести одно-родного треугольника совпадает с центром тяжести трех его вер-шин (т. е. трех материальных точек одинаковой массы, помещенных в трех вершинах треугольника).

Зная это, мы можем предположить, что центр тяжести одно-родного тетраэдра совпадает с центром тяжести его четырех вершин. Такая догадка представляет собой «догадку по аналогии». Зная, что треугольник и тетраэдр похожи друг на друга во многих отно-шениях, мы и высказываем эту догадку. Предоставляем читателю самостоятельно проверить, насколько верна высказанная только что догадка.

Функциональное мышление, характеризу-емое осознанием динамики общих и частных соотношений между математическими объектами или их свойствами (и умением это использовать), ярко проявляется в связи с изучением одной из ведущих идей школьного курса математики - идеи функции.

Как известно, одним из центральных требований начальной стадии международного движения за реформу математического обра-зования (возглавлявшегося Ф. Клейном) было требование обращать особое внимание на развитие у школьников функционального мыш-ления, наиболее характерными чертами, которого являются:

а) представление математических объектов в движении, изме-нении;

б) операционно-действенный подход к математическим фактам, оперирование причинно-следственными связями;

в) склонность к содержательным интерпретациям математичес-ких фактов, повышенное внимание к прикладным аспектам мате-матики.

Как показывают исследования, наглядно кинематические и физические представления, лежащие в основе функционального мышления, органически сливаются с формально-логическими ком-понентами мышления.

Одним из средств развития функционального мышления могут служить системы задач на математическое выражение и исследова-ние конкретных ситуаций с ярко выраженным «функциональным Содержанием».

В общем случае решение такой задачи содержит в себе три мо-мента:

1. В изучаемом явлении выделяют основные, существенные связи, отбрасывая второстепенные, несущественные детали, вводят различного рода упрощения и допущения.

2. Связав объекты, выступающие в изучаемом явлении, с чис-лами или геометрическими образами, переходят от зависимостей между этими объектами к математическим соотношениям - фор-мулам, таблицам, графикам.

3. Полученные математические соотношения исследуют, поль-зуясь уже известными, выработанными и изученными математическими правилами действий над ними, а результаты исследования истолковывают в терминах и понятиях изучаемого явления.

К сожалению, на практике из-за недостатка времени нередко приходится ограничиваться неполными задачами, содержащими только некоторые из перечисленных выше элементов. Какими именно, зависит от возраста учащихся и преследуемых учителем целей.

Нетрудно обнаружить, что разновидности математического мышления являются не чем иным, как специфическими формами - проявления диалектического мышления в процессе изучения мате-матики. Можно, например, указать на тот факт, что так называемое функциональное мышление является адекватным осознанию из-менчивости, взаимосвязи и взаимозависимости математических понятий и соотношений, что характерно для диалектического мышления.

Известно также, что наряду с задачей развития логического мыш-ления, составляющей одну из задач обучения математике, в школьном обучении должна решаться не менее важная, хотя и более общая задача - задача воспитания логической гра-мотности. Содержание понятия «логическая грамотность» доставляют такие логические знания и умения, которые дают воз-можность для успешного обучения в школе, для дальнейшего обучения и самообразования, для успешной общественно полезной практической деятельности и повседневной жизни. Исследования Л. Никольской показали, что от выпускников средней школы требуется овладение следующими логическими знаниями и уме-ниями: умения определять известные понятия, классифици-ровать, понимать смысл основных логических связок, распозна-вать логическую форму математических предложений, доказывать утверждения и обнаруживать логические ошибки, организовывать свою деятельность в соответствии с внутренней логикой ситуации, мыслить критически, последовательно, четко и полно, владеть основными мыслительными приемами. Нетрудно обнаружить, что в понятие логической грамотности вкладываются не только со-ответствующие знания и умения, но и сформированность многих качеств научного мышления. Поэтому задача воспитания логической грамотности правомерно рассматривается как важный элемент общей культуры мышления.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.