Рефераты. Развитие логического мышления учащихся при решении задач на построение

b>

1.4.2. История проблемы развития логического мышления

учащихся.

История проблемы развития логического мышления при обу-чении математике связана определенным образом с проблемами строгости доказательства в самой науке математике/Известные из истории математики первые доказательства таковыми не явля-ются с современной точки зрения. В древней индийской книге Ганеши доказательство формулы площади круга ограничивалось рисунком (см. рис.4) и надписью: «Смотри».

Рис. 4

Логика формальных рассуждений - формальная логика до-шла до настоящего времени из древних времен благодаря рабо-там древнегреческого мыслителя Аристотеля (384-322 гг. до н.э.), в которых разработана теория дедукции, т. е. правил логическо-го вывода, независящих от содержания рассуждений. Аристоте-лю принадлежит открытие формального характера логического вывода, состоящего в том, что в рассуждениях одни предложения выводятся из других независимо от их содержания, в силу своей определенной структуры, формы. Отсюда и название формаль-ной логики.

Формальная логика возникает тогда, когда развитие специ-альных наук и вообще человеческого мышления сделало акту-альным вопрос о том, как надо рассуждать, чтобы получать пра-вильные выводы.

В связи с появлением неэвклидовых геометрий, осознанием проблемы непротиворечивости системы научных знаний возни-кает потребность в совершенствовании аппарата доказательств! В IXX веке в результате применения в формальной логике мате-матических методов возникает математическая логика.

Математическая логика существенно обогатила курс фор-мальной логики, введя большую строгость в математические доказательства на основании новых требований к получению но-вых суждений.

Ответ на вопрос, заниматься ли развитием логического мыш-ления учащихся, отечественные психологи и методисты давали однозначно положительный в отличие от зарубежных, например, Ж. Пиаже, отстаивавшего положение о независимости развития логических структур от обучения.

Методист И.А. Гибш, выделяя аспекты проблемы развития логического мышления, подчеркивал необходимость формирова-ния умений учащихся: по подведению объектов под определение, классификации понятий, выведению следствий из определения, развитию умений пользоваться суждениями и умозаключениями, получать новые умозаключения на основании правил вывода и законов логики, пользоваться терминами «необходимо» и «дос-таточно», использовать различные приемы и виды доказательств. В недалеком прошлом крайнюю точку зрения в плане развития логического мышления учащихся отстаивал методист А. А. Сто-ляр, который считал необходимым на определенном этапе обуче-ния знакомить учащихся с элементами математической логики.

В работе И.Л. Никольской и Е.Е. Семенова выделены зна-ния и умения, которыми, по мнению авторов, выпускник школы должен владеть: уметь правильно формулировать определение знакомого понятия, классифицировать, понимать значение свя-зок «и» и «или», уметь строить отрицание утверждений, содержа-щих кванторы, понимать смысл терминов «если..., то...», «тогда и только тогда, когда», «не более», «не менее» и т. д.

1.4.3. Содержание проблемы развития логического мышления при обучении математике в школе.

Основной задачей формальной логики является отделение пра-вильных способов рассуждения от неправильных. Рассуждение можно считать верным лишь в том случае, если из истинных суж-дений - посылок нельзя получить ложное суждение - ложное заключение. Рассуждение, допускающее получение ложного заклю-чения из истинных посылок, не только не расширяет наши знания об окружающем мире, но доставляет о нем неправильную инфор-мацию. Поэтому такие рассуждения недопустимы.

Совокупность общественной практики, являющейся критери-ем истинности получаемых суждений из имеющихся, вылилась в ряд правил, законов, которые зависят только от формы рассужде-ний, от взаимосвязей составных частей рассуждения, но не от их содержания. Отсюда понятна важность законов и правил выво-да. О формах мышления и правилах вывода не ведется разговора ни в одном школьном предмете, хотя все предметы их широко используют. И это, вероятно, справедливо - не обязательно знать законы пищеварения, чтобы правильно переваривать пищу.

Говоря о логической составляющей в обучении учащихся ос-тановимся на смысле фразы, что логика приводит мысли в поря-док, выясним, какой смысл вкладывал М.В. Ломоносов в извест-ные его слова о том, что математика ум в порядок приводит.

Установить порядок на некотором множестве объектов - зна-чит пронумеровать их. Существуют определения строгого и не-строгого порядков. Можно установить порядок на множестве понятий и на множестве высказываний. Порядок на множестве понятий определяется с помощью отношения «предшествовать». Пример: понятие отрезок предшествует понятию многоугольник. Никакое понятие не предшествует самому себе. Порядок на мно-жестве суждений можно установить с помощью отношения «сле-довать», «быть следствием». Теорема о вписанном угле треуголь-ника следует из теоремы о сумме углов треугольника. Отношение «предшествовать» - отношение строгого порядка, отношение «следовать» - пример отношения нестрогого порядка.

Дедуктивное (аксиоматическое) построение курса математи-ки и есть наведение порядка на множестве понятий и суждений.

Почему важно, чтобы имеющаяся в голове человека информа-ция была упорядочена? На этот вопрос ответ можно найти в рабо-те А.А. Столяра: «Эта информация может оказаться в уме челове-ка неупорядоченной, т.е. размытые знания - изолированными, несвязанными между собой и поэтому малоэффективными в каче-стве исходного материала для получения новых знаний. Во-вто-рых, возможно также, эта информация будет лежать «мертвым грузом», т. е. заполнять лишь память человека, но не преобразо-вываться им, не использоваться для получения новых знаний ло-гическим путем, с помощью рассуждений».

Анализ содержания школьного курса математики позволяет выявить те логические действия, которые выполняются учащи-мися, изучающими дедуктивно построенный математический курс. Номенклатура умений может быть упорядочена следующим образом:

Учащиеся должны уметь:

¦ формулировать определения понятий с использованием раз-личных связок и кванторов;

¦ приводить примеры понятий, подводить объекты под опреде-ления различных логических конструкций;

¦ приводить контрпримеры, т. е. строить отрицание определе-ний различных логических конструкций;

¦ понимать отношения между двумя понятиями;

¦ проводить классификацию известных понятий;

¦ понимать свойства конкретных отношений - рефлективность, симметричность, транзитивность - без употребления соответ-ствующей терминологии;

¦ понимать смысл терминов «следует», «следовательно», «если..., то... »;

¦ выделять условия и заключения теоремы;

¦ строить отрицание утверждений различной структуры;

¦ различать свойства и признаки понятий;

¦ понимать смысл доказательства, различать правдоподобные и дедуктивные рассуждения;

¦ уметь проводить полученное доказательство;

¦ понимать эквивалентность отдельных определений, доказывать это в отдельных случаях;

¦ понимать смысл терминов «хотя бы один», «не более», «не менее», «все», «некоторые»;

¦ использовать отдельные методы доказательства - метод от противного, полную индукцию, доказательства методом исключения;

¦ понимать основные принципы построения дедуктивной теории.

Овладение перечисленными действиями по упорядочиванию изучаемого материала и является содержанием проблемы развития логического мышления.

1.4.4. Пути решения проблемы развития логического мышления учащихся.

Для решения задач развития логического мышления не требу-ется включения в курс дополнительного математического мате-риала. Задачи развития логического мышления можно ставить и решать на обычном учебном материале.

В системе работы учителя по развитию логического мышле-ния учащихся могут иметь место различные уровни.

I. Отсутствие специально организованной учителем работы по развитию логического мышления. Организационным факто-ром, направляющим в этом случае процесс развитии, является усваиваемое содержание предмета.

II. Организация деятельности учащихся по осознанию логи-ческой составляющей изучаемого содержания с помощью специально подобранных упражнений.

III. Организация специального обучения учащихся усвоению приемов логического мышления в явном виде с выделением их операционных составляющих. Такими приемами могут быть: доказательство методом от противного, подведение под определе-ние, подведение под понятие и многое другое.

Соответственно уровням организации деятельности учащихся происходит усвоение материала на различных уровнях система-тизации его в зависимости от осознания логических взаимосвязей в этом материале.

I. Уровень фрагментарных знаний, отсутствие осознания вза-имосвязей между компонентами системы.

II. Уровень частичной логической организации изученного материала, понимание отдельных его взаимосвязей.

III. Уровень логично организованных знаний.

Последний уровень характеризуется пониманием целостнос-ти системы знаний, пониманием места отдельных элементов сис-темы знаний в этой системе, т. е. систематизацией изученного ма-териала.

Приведем примеры упражнений, направленных на выделение логической составляющей изучаемого материала в соответствии со вторым уровнем организации деятельности учащихся.

ПРИМЕР: При изучении равнобедренного и равносторон-него треугольника наряду с другими заданиями можно предло-жить учащимся следующие вопросы:

- Верно, ли сформулировано определение: треугольник, у кото-рого две стороны равны и два угла равные, называется равно-бедренным?

- Верно ли, что все треугольники являются равнобедренными или равносторонними?

-Верно ли, что каждый равносторонний треугольник является равнобедренным, некоторые равнобедренные треугольники яв-ляются равносторонними?

-Какими могут быть неравносторонние треугольники?

- Верно, ли сформулировано предложение: биссектриса угла рав-нобедренного треугольника является его медианой и высотой?

В качестве примера приема в рамках третьего из выделенных ранее уровней рассмотрим прием по распознаванию признаков и свойств понятий. Актуальность изучения приема в явном виде диктуется большим количеством ошибок по смешению призна-ков и свойств понятий. Ошибки допускаются не только начинаю-щими изучать курс геометрии, но и выпускниками школы. И, на-против, понимание терминов свойство и признак понятия позво-ляет учащимся выяснить место каждой теоремы в системе теорем, систематизировать свои знания по каждому понятию, помогает правильно применять изученные теоремы. Ситуации, в которых используются теоремы, различны: свойства понятий используют-ся, когда есть объект, принадлежащий понятию, признаки - ког-да необходимо под понятие подвести.

Путаница свойств и признаков обусловлена тем, что кроме как в математике и, может быть, еще в медицине термины «свой-ства» и «признаки» нигде строго не разделяются. Например, в сло-варе русского языка дается такая формулировка: «Свойство - это качество, признак, составляющий отличительную особенность кого - чего - либо.» .И. Ожегов. Толковый словарь. М., 1998.) Или: «Свойство - то, что присуще предметам, что отличает их от других предметов или делает их похожими на другие предметы.» (Н.И. Кондаков. Логический словарь. М., 1971.)

В математике свойства понимаются как необходимые условия существования понятия, признаки - как достаточные или необходимые и достаточные условия существования понятия. В школьном курсе термин признак всегда употребляется как необходимое и достаточное условие.

Ближе всего к школьному пониманию терминов свойство и признак являются следующие определения, на которые можно опереться при разговоре с учащимися. «Свойство - каждая из множества сторон вещи или явления, выявляющаяся во взаимодействии данного предмета с другими.» (Энциклопедиче-ский словарь. М., 1964.) «Признак - показатель, примета, знак, по которым можно узнать, определить что-либо». (СИ. Ожегов. Толковый словарь. М., 1996.)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.