Главная:
Рефераты
На главную
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Рефераты. Решение задач на построение в курсе геометрии основной школы как средство развития логического мышления школьников
начале главы 8 “Окружность” в пункте “Касательная к окружности” решается задача о проведении касательной к окружности через данную точку. Говорится о том, что решение подобных задач основано на теореме (признаке касательной). Также в главе изучаются четыре замечательные точки треугольника. Задачи на построение (касательной к окружности, серединного перпендикуляра к отрезку) содержит каждый пункт главы. Основная цель главы 8 - дать учащимся систематизированные сведения об окружности и ее свойствах, вписанной и описанной окружностях (см. Приложение 1).В конце 8 класса в разделе задач повышенной трудности встречается задача на построение равнобедренной трапеции по основаниям и диагоналям. А также построения встречаются в задачах на повторение.в) 9 класс: содержит четыре главы. В главе 12 “Длина окружности и площадь круга” в §1 “Правильные многоугольники” рассматривается построение правильных многоугольников. Предлагается с помощью циркуля и линейки вписать в окружность различные правильные многоугольники. Также построения встречаются в задачах не повторение. Основная цель главы 12 - расширить и систематизировать знания учащихся об окружностях и многоугольниках (см. Приложение 1).В главе 13 “Движения” изучаются симметрии, поворот и параллельный перенос. В конце главы содержатся задачи на построение, решение которых основано на изученном материале. Основная цель главы 13 - познакомить с понятием движения на плоскости: симметриями, параллельным переносом, поворотом (см. Приложение 1).
2) А.В.
Погорелов
[5]а) 7 класс: содержит пять параграфов. В §1 “Основные свойства простейших геометрических фигур” рассматривается, как построить параллельные прямые с помощью угольника и линейки. В §2 “Смежные и вертикальные углы” рассматривается, как построить перпендикулярные прямые с помощью угольника и линейки. §5 “Геометрические построения” содержит пункт “Что такое задачи на построение”, где рассказывается о чертежных инструментах и о том, что значит решить задачу на построение. Схема решения не вводится. В следующих пунктах рассматриваются задачи на построение треугольника с данными сторонами; угла, равного данному; биссектрисы угла; деление отрезка пополам; построение перпендикуляра к прямой. Далее идут пункты “Геометрическое место точек”, в котором вводится определение ГМТ и Теорема о ГМТ, равноудаленных от двух данных точек; а также “Метод геометрических мест”, который раскрывает сущность данного метода. В конце параграфа приводится ряд задач на построение для самостоятельного решения. В основном это задачи на построение треугольника и окружности по данным элементам и задачи на ГМТ. Основная цель §5 - решать простейшие задачи на построение с помощью циркуля и линейки (см. Приложение 1).б) 8 класс: содержит пять параграфов. В конце §6 “Четырехугольники” содержится задача на построении четвертого пропорционального отрезка. Также содержится ряд задач на построение параллелограмма, ромба и трапеции по данным элементам. Основная цель §6 - дать учащимся систематизированные сведения о четырехугольниках и их свойствах (см. Приложение 1). В §9 “Движение” изучаются геометрические преобразования: центральная и осевая симметрии, поворот, параллельный перенос. В конце параграфа приведены задачи на построение, решение которых основано на методах данных преобразований. Основная цель §9 - познакомить учащихся с примерами геометрических преобразований (см. Приложение 1).в) 9 класс: в §11 “Подобие фигур” изучаются геометрические преобразования: подобие и гомотетия. В конце параграфа приведены задачи на построение, решение которых основано на методах данных преобразований. Основная цель §11 - усвоить признаки подобия треугольников и отработать навыки их применения (см. Приложение 1). В §13 “Многоугольники” рассматриваются построения некоторых правильных многоугольников. В конце имеется пара задач: вписать в окружность n-угольник и описать около окружности правильный
n
-угольник. Основная цель §13 - расширить и систематизировать сведения о многоугольниках и окружностях (см. Приложение 1).
3) А.Д.
Александров, А.Л.
Вернер, В.И.
Рыжик
[6]а) 7 класс: содержит три главы. В главе 1 “Начала геометрии” в §5 “Окружность и круг” содержится пункт “Построения циркулем и линейкой”, в котором рассказывается о чертежных инструментах, с помощью которых выполняются задачи на построение. Тут же приводится задача на построение треугольника, стороны которого равны сторонам данного треугольника. Приводится построение, доказательство и исследование, но на общей схеме внимание не заостряется. §6 “Углы” содержит пункт “Построение угла, равного данному, циркулем и линейкой”. Для самостоятельного решения задач нет. В §7 “Действия над углами” рассматривается задача на построение биссектрисы угла, которая решает еще две задачи: в данной точке прямой провести перпендикуляр к ней, построить прямой угол. Также параграф содержит пункт “Задача о делении угла на равные части циркулем и линейкой”, в котором рассказывается о неразрешимости задачи о трисекции угла. Основная цель главы 1 - рассказать о задачах систематического курса геометрии и заложить основу для его построения (см. Приложение 1).В главе 2 “Треугольники” в §10 “Признаки равенства треугольников” рассматривается задача о построении треугольника по двум сторонам и углу между ними. В §11 “Серединный перпендикуляр” первыми пунктами идут задачи о делении отрезка пополам и о построении перпендикуляра к данной прямой через данную точку, не лежащую на данной прямой. В конце параграфа содержится несколько задач на построение. Основная цель главы 2 - развить навыки решения задач на построение с помощью циркуля и линейки, начать знакомство с симметриями фигур (см. Приложение 1).В главе 3 “Параллельность” в §13 “Параллельные прямые” изучается, как строить параллельные прямые с помощью угольника и линейки. В §14 “Аксиома параллельности” рассматривается задача о построении треугольника по стороне и двум прилежащем к ней углам.б) 8 класс: содержит три главы. В главе 5 “Метрические соотношения в треугольнике” в § “Применение теоремы Пифагора” содержится пункт “Геометрическое место точек”, где объясняется, что значит, когда про фигуру говорят, что она является ГМТ, обладающих данным свойством. Также приводятся примеры, каким ГМТ являются биссектриса и серединный перпендикуляр. Параграф содержит такие задачи как, например, найти ГМТ, равноудаленных от прямой на данное расстояние; найти ГМТ, равноудаленных от двух данных пересекающихся прямых.в) 9 класс: содержит две главы. В главе 7 “Многоугольники и окружности” в задачах для самостоятельного решения к §31 “Хорды и касательные” содержатся задача на нахождение ГМТ, из которых данный отрезок виден под данным углом; задача на построение касательной к окружности из данной точки, общей касательной к двум окружностям. §33 “Правильные многоугольники” содержит пункт “Построение правильных многоугольников” с помощью циркуля и линейки. Также в нем рассказывается о том, что циркулем и линейкой могут быть построены не все правильные
n
-угольники, а только те, у которых n имеет определенное разложение. Предлагается решить задачи: вписать в окружность различные правильные
n
-угольники. В §35 “Площадь круга” рассказывается о неразрешимой задаче о квадратуре круга.В главе 8 “Другие методы геометрии” в §36 “Метод координат” содержится пункт “Окружность Аполлония”, где решение задачи о ГМТ, отношение расстояний от которых до двух данных точек есть постоянная величина. В §40 “Виды движений” рассматриваются “Метод параллельного переноса”, “Метод симметрии” и “Метод поворота”. Приводятся примеры задач на построение, решение которых основано на данных методах. В задачах для самостоятельного решения к §40 содержатся задачи на отработку изученных методов, в том числе задачи на построение трапеции и треугольника по данным элементам. В §42 “Подобие” рассматривается “Метод подобия”. В качестве примера приводится задача на построение четвертого пропорционального отрезка. В задачах для самостоятельного решения к §42 содержатся задачи на отработку изученного метода, в том числе задачи на построение прямоугольного треугольника по отношению катетов к гипотенузе и по отношению катетов к периметру. А также задачи: построить квадрат, вписанный в треугольник, ромб, сегмент; построить сегмент, вписанный в равносторонний треугольник, квадрат, окружность. Основная цель главы 8 - познакомить учащихся с методами, отсутствовавшими в классической элементарной геометрии, но играющими в современной геометрии ведущую роль: методом координат, векторным методом, методом преобразований (см. Приложение 1).
4)
А.П.
Кисилев,
Н.А.
Рыбкин
[8]Учебник содержит пять глав и сборник задач по геометрии.В главе 1 “Прямая линия” в §1 “Углы ” рассматривается построение перпендикулярных прямых с помощью угольника и линейки. §3 “Треугольники” содержит пункт “Геометрическое место”, где дается определение ГМТ, и приводятся примеры: что является ГМТ серединного перпендикуляра и биссектрисы. Далее следует § 4 “Основные задачи на построение”, где рассматриваются задачи на построение треугольника по трем его сторонам; угла, равного данному; биссектрисы угла; перпендикуляра к прямой из данной точки, лежащей и не лежащей на прямой; серединного перпендикуляра; задача о делении отрезка пополам; построение треугольника по основанию, углу, прилежащему к основанию, и сумме двух боковых сторон. После рассмотренных задач приводится схема решения задач на построение: анализ, построение, доказательство, исследование. В конце §4 имеется блок задач на построение для самостоятельного решения, который содержит задачи на построение суммы, разности углов; деление угла на
n
частей; построение различных треугольников по различным элементам; разделение данного отрезка на n равных частей; задачи на нахождение ГМТ, равноудаленных от двух данных точек, от трех вершин треугольника, от трех сторон треугольника и т.д. В §5 “Параллельные прямые” рассматривается построение параллельных прямых с помощью угольника и линейки. §6 “Параллелограммы и трапеции” содержит пункт “Задачи на построение”, в котором рассматриваются методы параллельного переноса, симметрии и примеры задач. Также учащимся предлагается самостоятельно решить задачи на построение трапеций, четырехугольников и треугольников по различным данным элементам, основываясь на изученных методах. В конце главы 1 имеется ряд задач на нахождение ГМТ и блок задач на построение.В главе 3 “Подобные фигуры” в §4 “Подобие фигур произвольного вида” имеется пункт “Задачи на построение”, в котором рассматривается метод подобия, но задач на применение метода данный пункт не содержит. В §5 “Некоторые теоремы о пропорциональных отрезках” рассматривается задача о построении четвертого пропорционального отрезка. В §6 “Метрические соотношения между элементами треугольника и некоторых других фигур” рассматривается задача о построении отрезка, среднего пропорционального между двумя данными отрезками. §8 “Тригонометрические функции острого угла” содержит пункт “Построение угла по заданной величине одной из его тригонометрических функций”. В §9 “Понятие о приложении алгебры к геометрии” рассматривается задача о разделении отрезка в среднем и крайнем отношении, а затем следует пункт “Алгебраический способ решения геометрических задач”, который раскрывает алгебраический метод решения задач на построение. Следующим пунктом идет “Построение простейших формул” с помощью циркуля и линейки. В конце главы 3 содержится ряд задач на нахождение ГМТ и блок задач на построение.В главе 4 “Правильные многоугольники” в §1 “Правильные многоугольники” рассматривается задача: вписать в данный круг правильный десятиугольник и определить его сторону в зависимости от радиуса. Также далее в пункте “На сколько равных частей можно делить окружность с помощью циркуля и линейки?”, в котором дается указание, как разделить окружность на определенное равное количество частей (и вписать в окружность правильные многоугольники с таким числом сторон).
Страницы:
1
, 2,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
Апрель (48)
Март (20)
Февраль (988)
Январь (720)
Январь (21)
2012 © Все права защищены
При использовании материалов активная
ссылка на источник
обязательна.