Рефераты. Решение задач на построение в курсе геометрии основной школы как средство развития логического мышления школьников

главе 5 “Измерение площадей” в §1 “Площади многоугольников” рассматриваются задачи на построение треугольника (квадрата), равновеликого данному; квадрата, площадь которого равна сумме (разности) площадей двух данных квадратов; площадь которого относится к площади данного квадрата, как m:n; разделить данный треугольник на m равновеликих частей прямыми, параллельными его стороне. В §2 “Площадь круга и его частей” приводится пункт, в котором рассказывается о неразрешимой задаче о квадратуре круга. В конце главы 5 содержится блок задач на построение.

В сборнике задач также имеются задачи на построение.

Вывод: В учебниках для 5-6 классов задачи на построение практически не рассматриваются как самостоятельные. Чаще всего это задания на построение фигур по заданным размерам. Процент заданий на построение из всех геометрических заданий: 5 класс - 39%, 6 класс - 34%. В целом картина кажется достаточно отрадной. Однако если учесть, что сам по себе геометрический материал в учебниках не превышает 13-16% от всего содержания учебника, то указанный процент заданий на построение падает до 4-6% [3].

Во всех учебниках по геометрии для 7-9 класса задачи на построение рассматриваются как самостоятельные в конце 7 класса. Осуществляются следующие элементарные построения: деление отрезка пополам; откладывание угла, равного данному; построение биссектрисы угла; построение перпендикуляра к прямой из данной точки, не лежащей на этой прямой. В качестве метода решения задач на построение в учебниках (кроме учебника [7]) рассматривается метод геометрического места точек. Схема решения приводится в учебниках [7], [8]. В учебнике [6] схема приводится без анализа. В учебнике [5] ее нет.

В 8-9 классах встречаются задания на построение фигур по некоторым заданным элементам. Произвольные треугольники и четырехугольники строятся по сторонам и углам. Четырехугольники особых видов (ромбы, квадраты, прямоугольники) - по сторонам и диагоналям. Рассматриваются приемы описывания и вписывания окружностей в треугольники и четырехугольники.

Алгебраический метод решения задач на построение приводится только в учебнике [8]. В учебнике [6] рассказывается о трисекции угла, квадратуре круга, окружности Аполлония.

В таблице приведен количественный анализ (процент заданий на построение) в учебниках:

Учебники

Класс

Всего задач в учебнике

Из них на построение

Процент от общего числа задач

Александров А.Д. и др. “Геометрия 7-9”

7

33

8

24

8

643

95

15

9

556

89

16

Атанасян Л.С. и др. “Геометрия 7-9”

7

362

90

25

8

448

64

14

9

321

36

11

Погорелов А.В. “Геометрия 7-9”

7

218

42

20

8

298

35

12

9

206

10

5

Рассматривая учебники, можно отметить, что в них достаточно высок процент заданий на построение в 7 классе, причем рассматриваются стандартные и элементарные задачи на построение. Однако к 9 классу процент геометрических заданий на построение резко падает. Быть может ситуация обусловлена тем, что к 9 классу у всех школьников уже развито логическое и пространственное мышление, сформированы графические умения и навыки, они легко и верно читают любой чертеж, не затрудняются с его интерпретацией, легко строят любой нужный чертеж по тексту задачи? Увы, ситуация совсем не такова. Так как задания на построение составляют базу для работы, развивающей навыки построения фигур, способствующей формированию умения читать и понимать чертеж, устанавливать связи между его частями, то недостаточность этой системы обусловливает плохое развитие пространственного и логического мышления ученика, низкий уровень его графической культуры. Эти недостатки не позволяют ученику эффективно изучать те разделы математики, где самостоятельно сделанная и хорошо понятая графическая интерпретация является тем самым “лучом света в темном царстве”, которого так иногда не хватает школьнику при изучении математики.

1.2 Анализ учебно-методической литературы

1) И.Ф. Шарыгин “Задачи по геометрии (Планиметрия)” [28]

Книга, состоящая из двух частей, включает более 600 задач по планиметрии. Вторая часть содержит параграф, посвященный теме геометрических мест точек. Задач предлагается немного, они достаточно сложные, предназначенные по большей мере для специализированных классов, для студентов. Задачи сопровождаются указаниями и подробными решениями. В некоторых других параграфах второй части, таких как, например, “Треугольник” и “Окружности и касательные”, также встречаются задачи на нахождение геометрического места точек.

2) В.В. Прасолов “Задачи по планиметрии (в двух частях)” [22] [23]

В этот сборник включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными знаниями уровня. Для всех задач прилагаются решения. Книга состоит из двух частей. Первая содержит классические темы планиметрии, вторая - геометрические преобразования и задачи на олимпиадную и кружковую тематику.

Всего 29 глав. За основу классификации задач приняты методы решения геометрических задач. Одна из глав посвящена методу ГМТ, которая содержит достаточное количество задач на построение разного уровня сложности, в которых применяется данный метод. Применяются как основные ГМТ, так и более сложные.

Есть глава, посвященная геометрическим построениям треугольников, четырехугольников, окружностей с помощью различных методов, включает в себя разнообразный набор задач на построение. Кроме того, в этой главе рассматриваются построения с помощью одной линейки, одной двусторонней линейки, с помощью одного прямого угла. Также здесь приводятся необычные построения (например, деление угла на n равных частей).

Имеются отдельные главы, посвященные методам параллельного переноса, центральной симметрии, осевой симметрии, поворота, гомотетии, в которых также хорошо отражена суть методов и содержится хороший набор задач разного уровня на применение каждого метода. Даются основные понятия к каждой главе.

3) Я.П. Понарин “Элементарная геометрия (в двух томах)” [20] [21]

Книга предназначена для более углубленного изучения элементарной геометрии. Для учащихся школ, лицеев, гимназий с математической специализацией и студентов. Первый том посвящен планиметрии и преобразованиям плоскости, второй - стереометрии и преобразованиям пространства.

В данном пособии уделено много внимания методу геометрических преобразований, в связи с тем, что чисто геометрические методы в последнее время отходят на второй план и данный метод до сих пор не нашел своего места в школьном курсе геометрии. Как пишет автор, его пытались изучать с самого начала, растянув на всю восьмилетнюю школу. Теперь предполагается заняться им в конце изучения планиметрии. Но по-прежнему ученики не владеют им даже на начальном уровне. В книге расширен материал школьных учебников, добавлены многие геометрические факты. Теория геометрических построений вынесена за рамки пособия. В систематическом виде изложен теоретический и задачный материал по методу геометрических преобразований плоскости. Он позволяет оригинально и красиво решать многие геометрические задачи. Большую часть пособия составляют задачи различной степени трудности, к большинству из них даны ответы или краткие указания.

Первый том содержит две части. Вторая часть посвящена преобразованиям плоскости. В частности две первые ее главы описывают движения плоскости и методы решения задач на построение (центральная симметрия, осевая симметрия, параллельный перенос, поворот, подобие).

Второй том также содержит две части. В первой части четвертая глава посвящена ГМТ. Здесь рассматриваются различные ГМТ плоскости, а также ГМТ пространства: разность квадратов расстояний, сумма квадратов расстояний, сфера Аполлония. Применение метода ГМТ для решения стереометрических задач. Вторая часть посвящена преобразованиям пространства аналогично второй части первого тома. Две первые ее главы описывают движения пространства и методы решения задач на построение (центральная симметрия, осевая симметрия, параллельный перенос, поворот, подобие).

В книге отдельно не выделяется применение метода ГМТ для планиметрических задач, а также не рассмотрен алгебраический метод.

4) И.И. Александров “Сборник геометрических задач на построение с решениями” [1]

Книга насчитывает более 600 задач на построение, что представляет учащимся и преподавателям огромный выбор. В основном книга посвящена решению задач на построение при помощи циркуля и линейки, но последний раздел посвящен решению задач одним циркулем, двусторонней линейкой, прямого или острого угла, односторонней линейкой с применением вспомогательной окружности Штейнера.

Сборник можно разделить на три части, включающие: 1) основные построения; 2) задачи, приучающие к построениям; 3) задачи на различные методы решения (метод ГМТ, метод геометрических преобразований, алгебраический метод). Представлен очень хороший набор задач различной степени сложности, на применение различных методов, и приведены решения. Каждый метод подробно описан, приведены примеры. Также в книге рассмотрена тема: “Применение тригонометрии к решению геометрических задач на построение”.

Вывод: Во всех книгах достаточно хорошо рассмотрены те или иные методы решения задач на построение, приведены решения задач. В книге [28] представлены задачи только на метод ГМТ. Сборники [22], [23] содержат отдельные главы, посвященные различным методам (кроме алгебраического). Включенные в них задачи имеют несколько повышенный по сравнению со школьными знаниями уровень. Наиболее оптимальным из рассмотренных книг, по нашему мнению, является сборник [1], он содержит много задач на применение различных методов. Причем только в нем рассматривается алгебраический метод. Кроме того, достаточно хорошими книгами являются пособия [20], [21]. В них наилучшим образом представлена тема геометрических преобразований и только здесь рассматривается ГМТ пространства.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.