Конечно, если это делать до того как ученики приобретут прочные навыки в отыскании решений различными способами, то результаты окажутся отрицательными. Внимание учащихся каждый раз будет распыляться между всеми способами, и они ни одного из них не усвоят основательно, чтобы применять его достаточно сознательно.
Различными способами хорошо решать задачи в конце учебного года, при повторении курса геометрии, когда учащиеся уже имеют достаточные навыки в решении задач на построение. Задачу, допускающую различные способы решения, лучше задавать на дом, чтобы они не только решили, но и нашли наиболее простое решение.
После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элементов определенным построением, удовлетворяет всем условиям задачи. Значит, доказательство существенно зависит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от намеченного при анализе плана построения, а поэтому, и доказательство в каждом случае будет свое. Доказательство представляет собой часть решения задачи, по своему логическому содержанию обратную анализу. Если в анализе устанавливается, что всякая фигура, удовлетворяющая поставленным условиям, может быть найдена таким-то и таким-то путем, то в этой, третьей части решения доказывается обратное положение. Это обратное положение в общем виде может быть сформулировано так: если некоторая фигура получена из данных элементов таким-то построением, то она действительно удовлетворяет поставленным условиям. В Приложении 3 приведено решение задачи: “Построить трапецию по четырем сторонам”.
При решении простейших задач, когда все условия задачи находят непосредственное отражение в плане построения, нет необходимости доказывать, что фигура, полученная из данных элементов таким построением, является искомой. Например: “Построить треугольник по двум сторонам и углу между ними”. Здесь доказательство сводится к простой проверке, такие ли взяли стороны, как данные, и будет ли построенный угол равен данному. В подобных задачах доказательство является излишним, ибо правильность решения обеспечивается соответствием построения анализу и данным условия задачи.
Доказательство не просто зависит от анализа и построения, между ними существует взаимосвязь и взаимообусловленность. Построение проводится по плану, составленному при анализе. Таких планов можно указать несколько. Построение и доказательство являются своеобразным критерием правильности и рациональности составленного плана. Если план не осуществим имеющимися инструментами или же построение оказывается нерациональным, мы вынуждены искать новый план решения. Аналогичным образом и доказательство, и исследование влияют на анализ, предопределяя нередко выбор плана решения.
Хотя доказательство при решении задач на построение проводится аналогично доказательству теорем, с использованием аксиом, теорем и свойств геометрических фигур, между ними имеется и некоторое различие. При доказательстве теорем в большинстве случаев без труда выделяют условие и заключение. При решении задач на построение уже труднее найти данные, на основании которых можно доказать, что построенная фигура является искомой. Поэтому при решении конструктивных задач в классе целесообразно иногда специально выделять, что дано, и что требуется доказать. Например, при решении задачи: “Построить ромб по двум его диагоналям” предлагаем ученику записать, что дано (диагонали взаимно перпендикулярны и, пересекаясь, делятся пополам) и что требуется доказать (стороны равны). В свою очередь при решении задач дома и в контрольных работах можно не требовать оформления доказательства с выделением отдельно условия и заключения. Нет надобности требовать проведения особого доказательства в задачах, где правильность решения очевидна [11].
Как и в каком месте курса геометрии следует знакомить учащихся с общей схемой решения задач на построение? Здесь возникает два различных методических вопроса [10]. Первый из них -- это вопрос о том, с какого времени в преподавании геометрии при решении задач должны фактически производиться анализ, построение, доказательство, исследование? Второй вопрос, отличный от первого, -- это вопрос, когда учащийся должен быть ознакомлен с логической схемой решения задачи.
Обращаясь к первому вопросу, заметим, что первым по времени вводимым элементом лучше выбрать построение в смысле перечисления и описания тех или иных операций. Здесь имеется в виду самое описание процесса употребления инструмента (“прикладываем два острия ножек циркуля к точкам М и N, затем, не изменяя расстояния между остриями, помещаем одно из них в точку О” и т. п.). На более высокой ступени отдельные операции просто называются (“описываем из точки О окружность радиусом MN” или “опускаем из точки С перпендикуляр на прямую АВ”). Наконец, последней ступенью можно было бы считать ту, когда в качестве элементов построения могут называться и довольно сложные по своему выполнению, но хорошо известные учащимся задачи (“строим треугольник по гипотенузе и катету”, “проводим из точки М касательную к окружности” и т. п.).
Вторым моментом по времени появления в школьном курсе лучше выбрать исследование задачи. Первый элемент исследования появляется при решении задачи о построении треугольника по трем сторонам, в виде вопроса о том, можно ля выбрать все три стороны произвольно. К этому должно скоро прибавиться знакомство с возможностью существования нескольких решений одной задачи. Этому моменту нужно придавать весьма большую принципиальную значимость. Дело в том, что слова “найти точку” обозначают требование “найти все точки, которые...” (а не просто “какую-либо точку, которая...”). Аналогично “решить уравнение” значит “найти все числа, которые удовлетворяют уравнению” (а не просто “какое-либо число, которое...”). “Построить окружность” - это “построить, все окружности, которые...” (а не просто “построить какую-либо окружность, которая...”) и т. д.
Задачи на геометрические построения с двумя решениями (или более) - первый случай, когда учащийся встречается с такого рода выражениями в математике, и чрезвычайно важно, чтобы учащийся привыкал к ним с самого начала, с 7-8 класса. Иначе совершенно неизбежно возникновение в дальнейшем вопросов такого типа, как “зачем при извлечении корня брать оба знака”. Сам термин “исследование” должен появиться много раньше, чем, скажем, термин “анализ”.
Третьим моментом, появляющимся, примерно, в одно время с элементами исследования, является доказательство правильности выполнения построения. Уже такие задачи в 7 классе как построение угла, равного данному, построение перпендикуляров с помощью циркуля и линейки и т. д. ставят на очередь вопрос о том, будет ли построенный угол действительно равен данному, будет ли построенная прямая перпендикулярна к данной? Однако и на этой стадии работы и на последующих нет большой необходимости (только для соблюдения формального однообразия изложения) требовать проведения доказательства в тех задачах, где правильность построения усматривается непосредственно. Некоторые, даже сравнительно сложные, задачи на построение, могут, как кажется, оставляться без особого доказательства. Например, задача, решаемая методом геометрических мест: построить треугольник по основанию, противолежащему углу и медиане, проведенной к основанию.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14