Рефераты. Концепции современного естествознания

p align="left">Теория и спектроскопия показывают, что заполнение p-клеток происходит по правилу: электроны располагаются прежде всего по клеткам, отвечающим различным значениям квантового числа m так, чтобы все спиновые стрелки смотрели в одну сторону. Это значит, что суммарный спин атома должен быть максимальным.

У атома He электронами использованы все возможности, отвечающие главному квантовому числу n=1, и таких возможностей только 2. У атома Ne заполнены все клеточки, отвечающие n=2; таких клеток 4 и в каждой по 2 электрона, всего 8 электронов.

У следующего за неоном элемента Na начинается новая оболочка: одиннадцатый электрон попадает в состояние 3s и т.д.

Сказанного достаточно, чтобы понять, чем определяется периодичность свойств элементов, открытая Менделеевым. За физические и химические свойства атома ответственны прежде всего его внешние электроны - те электроны, у которых главные квантовые числа имеют наибольшее значение. Обладая наибольшей энергией, эти электроны легче других могут быть отделены от атома, они дальше отстоят от ядра и легче поддаются различным воздействиям. Внутренние электроны, входящие в состав заполненных оболочек, защищены от этих воздействий внешними электронами.

Квантовые переходы и излучение

Почти все свойства атомов - химические, электрические, магнитные, оптические и т.д. - зависят от конфигураций внешних электронов. Только в случае очень сильного воздействия на атом в игру вступают сильно связанные внутренние электроны.

Если сообщить атому достаточную энергию за счет столкновения с быстрым электроном (как это происходит в рентгеновской трубке) или облучая его фотонами большой энергии, то удается выбить один из внутренних K-электронов. Электрон с более удаленной от ядра L-оболочки перейдет на K-оболочку и займет освободившееся место, испуская при этом жесткий фотон. В конце концов, после всех переходов с одной оболочки на другую и испускания серии рентгеновских квантов, из окружающей среды внешней оболочкой будет захвачен свободный электрон и атом вернется в электрически нейтральное состояние.

Атомы и молекулы

Ядра имеют положительный электрический заряд и окружены роем отрицательно заряженных электронов. Такое электрически нейтральное образование называют атомом. Атом есть наименьшая структурная единица химических элементов.

Атомные электроны образуют весьма рыхлые и ажурные оболочки. Распределение электронов по оболочкам подчиняется определенным правилам, установленным квантовой механикой. Электроны, находящиеся на внешних оболочках атомов, определяют их реакционную способность, т.е. их способность вступать в соединение с другими атомами.

Связь атомов возможна, если совместная внешняя оболочка целиком заполнена электронами. Такое образование называют молекулой. Молекула есть наименьшая структурная единица химического соединения. Число возможных комбинаций атомов, определяющих число химических соединений, составляет около 106.

Некоторые атомы (углерода и водорода) способны образовывать сложные молекулярные цепи, являющиеся основой для образования макромолекул, которые проявляют уже биологические свойства.

В природе лишь немногие атомы существуют поодиночке, поскольку у большинства элементов атомы химически нестабильны. Для того, чтобы атом был стабильным, его внешняя электронная оболочка должна быть заполнена определенным числом электронов (у водорода и гелия - 2, у остальных - 8).

Атомы с незаполненными внешними электронными оболочками способны вступать в химические реакции, образуя связи с другими атомами. Реакции сопровождаются перегруппировкой электронов, в результате которой внешняя электронная оболочка у каждого из атомов оказывается заполненной.

Соединением называют вещество, в котором атомы двух или более элементов объединены в определенном соотношении. Соединение характеризуется определенным составом и определенным набором свойств, отличающихся от свойств элементов, из которых оно состоит. Например, свойства воды отличаются от свойств водорода и кислорода, из которых она состоит.

Молекула - это мельчайшая частица соединения, сохраняющая все его свойства (соединения с ионными связями, как например, NaCl, состоят не из молекул, а из ионов). Атомы могут соединяться в молекулы, если энергия связанных атомов окажется меньшей, чем суммарная энергия изолированных атомов.

Кристалл образуется путем регулярного повторения расположения атомных групп в пространстве. Существует 14 различных основных типов кристаллов. Кристаллы могут быть ионными (кристаллы поваренной соли) и ковалентными (графит, алмаз). Металлы образуют еще один тип кристаллических структур, в которых внешние электроны не связаны с каким-либо определенным атомом; эти электроны могут свободно перемещаться внутри металла (электроны проводимости). Металлы со свободными электронами в межатомном пространстве являются хорошими проводниками. В ионных и ковалентных кристаллах каждый электрон связан с определенным атомом или парой атомов; свободные электроны отсутствуют. Поэтому кристаллы типа NaCl или алмаза плохо проводят электричество.

Мир реальных макрообъектов - статистическая физика

Выход книги Дарвина “Происхождение видов” (1859) совпал с открытием Дж. Максвеллом статистического закона о распределении молекул по скоростям, который допускает случайные события. С теорией естественного отбора Дарвина и законом Максвелла в науку вошло представление о динамических и статистических закономерностях. Первые точно определяют поведение отдельных тел, вторые - вероятность поведения тел, входящих в большие ансамбли.

В физике, химии и биологии встречаются статистические закономерности, отличие которых от законов механики состоит в том, что статистические закономерности управляют системами, состоящими из огромного числа объектов, подверженных случайным событиям. Случайными называют события, которые зависят от множества причин, связи между которыми не представляется возможным установить. Но при многократном повторении случайных событий проявляются определенные закономерности.

Открытие законов механики послужило основой для формирования механистической картины мира, согласно которой миром правят строгие однозначные законы, не допускающие никаких случайностей. Течение всех процессов определялось начальными условиями, мир представлялся состоящим из вечных, неделимых частиц, движение которых всегда можно описать с помощью законов механики.

Согласно представлениям того времени чья-то смерть или рождение, хорошая погода сегодня или война в будущем были предопределены существовавшим до этого расположением и скоростью частиц, составляющих Вселенную. “Природа проста и не роскошествует излишними причинами”, - утверждал один из создателей механистической картины мира - Исаак Ньютон. С открытием статистических закономерностей, которые вошли в науку с работами Дарвина, Максвелла, Больцмана, начали формироваться новые представления о мире, которые более адекватно отражали существующие в нем взаимосвязи.

Статистическая физика приняла завершенный вид после работ американского физика Дж.У.Гиббса, который дал общий метод вычисления усредненных макроскопических величин для произвольной системы.

Для описания движения планет, космического корабля, работы простых механизмов используют уравнения механики, которые позволяют определить положения и скорости всех частей системы. Но уравнения механики становятся бессильными, когда число частиц в системе очень велико, например, когда надо описать поведение газа или электрического тока.

Статистическая физика изучает свойства сложных систем - газов, жидкостей, твердых тел и их связь со свойствами отдельных частиц - атомов и молекул, из которых эти системы состоят. Для таких систем не нужно слишком детального описания. Нельзя измерить энергию и импульс всех молекул газа. В газе мы измеряем давление, которое есть результат ударов большого числа молекул; сопротивление кристалла есть следствие большого числа столкновений электронов с атомами. Во всех физических системах, состоящих из большого числа частиц, изучаются величины, усредненные по многим частицам.

Ансамбль (статистический) - совокупность одинаковых физических систем многих частиц, находящихся в одинаковых макроскопических состояниях, в то время как микросостояния могут быть различными.

Тепловое равновесие и флуктуации. Неравновесные состояния и релаксация

Релаксация - процесс установления термодинамического равновесия в макроскопической физической системе. Под временем релаксации разумеют время установления равновесия в системе. Время релаксации существенно зависит от размеров системы, а именно оно растет с увеличением размеров макротел. Это означает, что малые части макросистемы приходят в равновесие значительно быстрее, чем все тело в целом.

В связи с этим можно ввести понятие о локальном равновесии, т.е. равновесии в точке, под которой понимается элемент объема тела, достаточно малый по сравнению с размерами самого тела, но содержащий достаточно большое количество молекул или атомов.

При локальном равновесии “точка среды” характеризуется свои местным значением температуры, а сама неравновесная среда описывается “полем температур”. С течением времени неполное равновесие всей замкнутой системы превращается в полное, температура для всех ее частей постепенно выравнивается. В равновесных системах давление и температура постоянны по всему объему тела. Если же в теле имеется какое-то распределение давлений и температур, значит система неравновесная. Из-за наличия перепадов (градиентов) давления в таком теле возникают внутренние макроскопические движения, характеризующиеся некоторым распределением скоростей.

Тепловая физика: от Карно к Гиббсу

С.Карно, “Размышления о движущей силе огня и машинах, способных развивать эту силу”, 1824 г. Основная идея: тепловая машина производит работу благодаря передаче тепла от источника - нагревателя, находящегося при температуре T1, к холодильнику, находящемуся при температуре T2<<T1, т.е. от более нагретого тела к менее нагретому. С.Карно впервые разработал метод циклов. Цикл - это последовательность процессов, которые возвращают в конечном счете всю систему участвующих в них тел в первоначальное состояние. На основе цикла Карно сформулирован второй закон термодинамики.

Согласно второму закону термодинамики, во всякой изолированной (т.е. не испытывающей никаких воздействий со стороны других тел) системе самопроизвольно протекают только такие процессы, которые приводят ее в состояние, не изменяющееся в дальнейшем с течением времени. Такое состояние системы называется тепловым равновесием. Оно может достигаться в системе и тогда, когда она не является изолированной, но находится в неизменных внешних условиях.

Хорошо известный пример: тепло всегда переходит от горячего тела к холодному, пока температуры обеих тел не станут одинаковыми и не установится тепловое равновесие. Однако понятие теплового равновесия значительно сложнее.

С точки зрения кинетической теории состояние теплового равновесия возникает как результат равенства скоростей прямого и обратного процессов (например, равенства скоростей испарения и конденсации в замкнутом сосуде с жидкостью).

Следует подчеркнуть, что равенство это выполняется лишь в среднем (для не слишком малых промежутков времени и не слишком малых объемов): при переходе к малым временам и малым объемам наблюдаются отклонения от теплового равновесия, или флуктуации, обусловленные неточным совпадением скоростей противоположно направленных элементарных процессов в каждый данный момент.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.