Впервые клетки (точнее, пустые и уже неживые клеточные стенки) увидел в микроскоп Роберт Гук в 1665 году. Основной вклад в развитие клеточной теории внесли Т.Шванн (1838) и Р.Вирхов (1855).
Все живые организмы построены из клеток: одноклеточные - из одной, многоклеточные - из множества клеток, образующихся путем деления из одной клетки-зиготы. Человеческое тело состоит примерно из (одного квадрильона) клеток.
Клетка обладает всеми основными свойствами живой системы: обменом веществ и энергии (метаболизм), размножением и ростом, реактивностью и движением. Она является наименьшей структурной и функциональной единицей живого.
Клетка состоит из трех основных частей: 1) поверхностной или клеточной мембраны, которая отделяет клетку от внешней среды и контролирует обмен между клеткой и средой; 2) цитоплазмы, содержащей разнообразные микроструктуры и органеллы и 3) клеточного ядра, в котором содержится ДНК - хранитель генетической информации.
Клеточная мембрана представляет собой двойной слой молекул липидов, в который встроены молекулы белков. Клетка способна выделять за пределы своей наружной мембраны различные вещества, например слизь, целлюлозу, образующие клеточные стенки, и другие материалы, а также избирательно поглощать различные вещества извне. Мембрана обеспечивает поддержание определенной концентрации солей внутри клетки на постоянном уровне. Гибнущая клетка теряет контроль над внутренней концентрацией различных веществ, особенно солей.
Поглощение и выделение различных веществ живой клеткой контролируется особыми белками, встроенными в мембрану. Эти белки служат как бы воротами или насосами, и их работа связана с потреблением энергии.
Внутри мембраны заключено клеточное содержимое - очень вязкая среда, называемая цитоплазмой. В цитоплазме находятся разнообразные органеллы, которые также обычно окружены мембранами. К ним относятся митохондрии, в которых заключены дыхательные ферменты. Здесь “сжигаются” сахара и синтезируется АТФ (аденозинтрифосфорная кислота), богатая энергией. В растительных клетках кроме митохондрий есть хлоропласты, содержащие хлорофилл. Здесь происходит фотосинтез, в ходе которого синтезируются сахара и молекулы АТФ.
В клетках бактерий ДНК свободно располагается в цитоплазме. В клетках грибов, растений и животных ДНК входит в состав хромосом, которые располагаются в ядре. Ядро отделено от цитоплазмы ядерной мембраной.
В типичной клетке содержится свыше 500 различных ферментов и протекают сотни и даже тысячи химических реакций, которые осуществляются с помощью белков-ферментов. Синтез всех необходимых клетке веществ контролируется следующим образом:
1) С помощью репрессии (подавление) или индукции синтеза на генном уровне. Конечный продукт биосинтеза может выключить работу соответствующего гена (репрессия). Поступившее в клетку или образовашееся в ней вещество может включить работу соответствующего гена (индукция).
2) Посредством ингибирования (подавления) конечным продуктом активности ферментов. Если вещество становится доступным в достаточном количестве, то это ведет к подавлению синтеза как его самого, так и ферментов, участвующих в его образовании.
Ингибирование конечным продуктом есть проявление отрицательной обратной связи, обычного механизма регуляции, который встречается не только в клетках. Например, когда вода из туалетного бачка спущена, он снова наполняется до нужного уровня. Термостатическое устройство под действием тепла отключает систему обогрева комнаты, а наполненный желудок через посредство нервной системы выключает чувство голода.
Новые клетки образуются только в результате деления предшествующих клеток (принцип Вирхова). Основной способ деления клеток - митоз. Жизненный цикл клетки представляет собой промежуток времени от момента возникновения клетки до последующего деления. В это время клетка растет, специализируется и выполняет соответствующие функции в составе тканей и органов многоклеточного организма.
Ткани животного организма характеризуются различной судьбой составляющих их клеток. Так, в постоянно обновляющихся тканях (костный мозг, кишечный эпителий, эпителий кожи) большинство клеток постоянно находятся в митотическом цикле (до 80%). В растущих тканях (печень, почки), напротив, только 5-10% клеток непрерывно делятся, а другие выходят из митотического цикла и дифференцируются. Клетки стабильных тканей (нервной и мышечной систем) в конце эмбрионального периода выходят из митотического цикла, необратимо дифференцируются и выполняют специфические функции в течение всей жизни организма.
Разнообразие клеток столь же удивительно, как и разнообразие растений и животных. Проще всего устроены клетки цианобактерий и настоящих бактерий. У них отсутствуют ядра, митохондрии, пластиды и некоторые другие структуры, характерные для клеток высших организмов, не развита система внутренних мембран. В связи с отсутствием ядра такие клетки называются прокариотическими.
Бактериальные клетки могут быть округлыми, палочковидными, изогнутыми или скрученными. Клетки шарообразных бактерий (кокков) способны склеиваться друг с другом, образуя пары, комочки, пленки или длинные цепи. Палочковидные бактерии (бациллы) могут образовывать пары или цепочки, но чаще живут как одиночные клетки.
Клетки настоящих водорослей и наземных растений, грибов и животных имеют оформленное ядро и называются эукариотическими.
Огромное число эукариотических организмов существуют как отдельные клетки: одноклеточные водоросли (хлореллы), одноклеточные грибы (дрожжи) и одноклеточные животные (амебы, инфузории).
Клетки многоклеточных растений и животных могут выглядеть совершенно по-разному. Человек, например, как и все прочие позвоночные, состоит из нервных и мышечных клеток, клеток печени, костной ткани и многих других. Разнообразие формы и размеров клеток соответствует разнообразию их функций.
Несмотря на это разнообразие в основе своей все клетки очень сходны, и каждая клетка осуществляет все основные жизненные функции, которые свойственны любому живому существу.
Многоклеточные организмы, к которым относятся высшие растения и животные, состоят из множества специализированных клеток, которые происходят из одной исходной неспециализированной клетки, в типичном случае зиготы. Вопрос о том, как происходит эта специализация, какой механизм координирует развитие различных клеток и организует построение их них различных тканей и органов, - один из самых волнующих в современном естествознании.
Первая стадия, ведущая к специализации клетки, - это детерминация (предопределение) ее будущей роли: станет ли она печеночной, мышечной или нервной и пр. Судьба клетки определяется на раннем этапе эмбриональной жизни и зависит от ее положения в эмбрионе. Например, у зародыша саламандры, когда он еще выглядит как почти бесформенный комочек, можно взять кусочек кожи с места будущей передней конечности и пересадить на боковую сторону другого эмбриона. Позже на этом необычном месте разовьется добавочная передняя лапа, растущая на боку саламандры. Следовательно судьба пересаженного кусочка кожи уже была необратимо предопределена.
Через некоторое время после того, как определится будущая роль клетки, эта клетка и ее потомки начинают готовиться к выполнению своих специальных функций. Клетки, предназначенные для выполнения определенной функции, по мере роста и деления, становятся все более и более специализированными и группируются в орган. Этот процесс совершается с невероятной точностью. Поразительный пример - рост тысяч нервных волокон из сетчатки глаза по направлению к зрительным центрам мозга.
Для координации и управления функциями у высших животных служат две коммуникационные системы - нервная и гуморальная.
Благодаря нервным клеткам, которые, подобно “датчикам” в системах регуляции, следят за параметрами внутренней среды (уровнем сахара, содержанием CO2, температурой тела и пр.) животный организм может поддерживать постоянство внутренней среды. Это явление называется гомеостазом и наивысшего развития достигает у птиц и млекопитающих.
Гормональная система есть и у животных, и у растений. Гормоны - это органические соединения, которые образуются в специализированных клетках в небольших количествах и транспортируются по всему организму с жидкостями тела (кровь и пр.) и специфически управляют функциями других клеток или органов вдали от места своего образования.
К гормонам относятся у растений ауксины, гиббереллины, цитокинины (регуляторы роста); у животных - тироксин (щитовидная железа), адреналин и норадреналин (мозговое вещество надпочечников), инсулин (поджелудочная железа) и стероиды - гормоны коры надпочечников и половые гормоны.
В простейшем случае сама концентрация регулируемого гормоном субстрата тормозит или усиливает образование гормона. Например, повышенная концентрация глюкозы в сыворотке крови стимулирует секрецию инсулина, который снижает концентрацию глюкозы, усиливая синтез гликогена из нее. Напротив, возрастание концентрации кальция тормозит выделение гормона паращитовидной железы, который регулирует обмен кальция и фосфата.
Многие эндокринные железы сами находятся под гормональным контролем. Центральное место в иерархии эндокринных желез занимает гипофиз, тесно связанный с гипоталамусом. Передняя доля гипофиза вырабатывает пять гормонов, которые побуждают периферические эндокринные железы выбрасывать в кровь свои гормоны, а эти последние в свою очередь оказывают тормозящее воздействие на гипоталамо-гипофизарную систему.
Размножение - один из основных феноменов, присущих всему живому. Оно обеспечивает сохранение видов в ряду поколений.
При бесполом размножении новая особь возникает из одной или нескольких способных к делению клеток старой особи.
Размножение одноклеточных организмов осуществляется путем деления родительской клетки. В данном случае смерти организма в привычном понимании не наблюдается: одноклеточные потенциально бессмертны.
У многоклеточных организмов клетки дифференцируются на генеративные и соматические (сома - тело).
При половом размножении в результате слияния половых клеток (гамет) образуется зигота, из которой затем развивается новая особь. Родительские особи, оставив потомство, умирают.
Бесполое размножение широко распространено у низших организмов, но нередко встречается и у высших. Оно имеет определенные преимущества, которые заключаются в том, что дочерний организм получает точные копии всех генов материнского организма, так что родители и дети оказываются генетически идентичны. Эту идентичность мы наблюдаем при размножении растений черенками, отводками, клубнями и пр.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40